КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Кислород
Азот Азот располагается в таблице Менделеева под седьмым номером; его атомная масса равна 14,0067. Он представляет собой бесцветный газ и входит основной составляющей частью (78 процентов) в атмосферу Земли; обнаружен он также в газовых туманностях Вселенной и в солнечной атмосфере; есть он на Уране, Нептуне и на других планетах. В природных условиях азот представлен в молекулярном виде; его молекула состоит из двух атомов; она — очень прочная и распадается лишь при нагреве выше 3000 градусов Цельсия. Азот сжижается при температуре ниже минус 196 градусов, а затвердевает ниже минус 210 градусов. В твердом состоянии он образует кубические и гексагональные модификации. Азот химически малоактивен: в нормальных условиях он взаимодействует лишь с литием, образуя кристаллы. В то же время известны самые различные соединения азота. С водородом он образует аммиак, молекула которого состоит из одного атома азота и трех атомов водорода. Аммиак — тоже газ и тоже бесцветный; он сжижается при температуре ниже минус 34 градусов, а затвердевает ниже минус 78 градусов; получают его синтезом из простых веществ при температуре 400 … 500 градусов, под давлением 5 … 1000 атмосфер и в присутствии катализатора (обычно железа). Аммиак выделяется также при коксовании каменного угля. Современная химия представляет молекулу аммиака в виде трехгранной пирамиды с атомами в ее вершинах; атомы водорода в ней разнесены под углом 107 градусов. Известны еще несколько соединений азота с водородом, и наиболее распространенное из них — гидразин (или диамид) — бесцветная жидкость, затвердевающая при температуре ниже двух градусов и закипающая при 113,5 градусах Цельсия. Молекула гидразина содержит два атома азота и четыре атома водорода. Гидразин менее устойчив, чем аммиак, и на воздухе горит с большим выделением тепла. Из других соединений азота упомянем азотную кислоту, молекула которой состоит из одного атома азота, одного атома водорода и трех атомов кислорода; это — бесцветная жидкость, кипящая при 84,1 градусе, а при минус 41,6 градуса затвердевающая в прозрачную кристаллическую массу. Водный раствор азотной кислоты разрушает животные и растительные ткани, соединяется почти со всеми металлами и неметаллами. Отметим еще так называемые нитриды — соединения азота с металлами и неметаллами. Одно такое соединение с литием мы уже упоминали: оно легко образуется, но также легко распадается при температуре выше 300 градусов. Другие нитриды металлов возникают труднее, но и отличаются высокой температурой плавления, что говорит о их термической и химической стойкости. Они характеризуются металлическим блеском, электронной проводимостью, а также высокой твердостью. Нитриды могут включать не один металл, а сплавы. Атомарные соотношения нитридов могут быть некратными, то есть на один атом металла может приходиться менее одного атома азота. Нитриды неметаллов — соединения с бором, с алюминием, с кремнием — известны как твердые полимерные вещества с температурой плавления выше 2000 градусов; они являются либо диэлектриков, либо полупроводниками. Топология атома азота — оригинальная; об этом говорит его петлевая валентность: он присоединяет к себе нечетное количество атомов водорода, а именно три. Номинальная длина шнура исходного тора атома составляет 25 700 эфирных шариков; это относительно длинный шнур, и поэтому деформация тора идет не по пути складывания его вдвое, а —втрое: сначала окружность тора прогибается с трех сторон, затем образовавшиеся три выступа вытягиваются в лучи (лепестки), и на их концах возникают петли; так формируется трехлепестковый атом азота. Если проследить за топологией одиночного атома дальше, то можно отметить, что лепестки изогнутся в одну сторону и сойдутся вместе, уткнувшись вершинами петель друг в друга; атом приобретет грейферную форму. Но скорее всего, до этой грейферной формы дело не дойдет: трехлепестковые атомы при случайных столкновениях будут образовывать двухатомные молекулы. В молекуле азота три петли одного атома прилипают к таким же трем петлям другого; слипаются также их лучи, так как они представляют собой желоба. Оценивая силу сцепления атомов в молекуле азота, можно сказать, что она очень большая; и для того, чтобы разорвать молекулу, нужно приложить огромное усилие. Молекула могла бы быть вообще нерасторжимой, если бы не два обстоятельства. Первое: размеры атомов в молекуле — не одинаковые, и поэтому их взаимное прилегание — далеко не идеальное; если и встречаются идеальные пары, то они — большая редкость, и у них судьба — жить на пару почти вечно. Второе: спаренные лепестки молекулы испытывают взаимное влечение, и два из них попытаются максимально сблизиться между собой, но им будет противостоять упругость шнуров; борьба этих сил породит неустойчивость в виде порхания спаренных лепестков; колебания отдельных лепестков определяются их индивидуальными характеристиками, и поэтому лепестки в паре будут колебаться невпопад — это еще больше ослабит молекулу. Порхания спаренных лепестков порождают вокруг молекулы стоячее тепловое поле, и это поле делает молекулу пушистой. Колеблются не только сблизившиеся лепестки, но и оставшийся одиночный, хотя в меньшей степени; и он будет дополнительно раскачивать тепловое поле. Отсюда, азот — газ. Петлевые соединения атомов азота с атомами других химических элементов хорошо иллюстрируются на примере аммиака: атомы водорода прилипают в нем к присасывающим сторонам петель атома азота, “грейфер” при этом распускается и приобретает вид трехгранной пирамиды, а точнее сказать — три лепестка молекулы с прилипшими на концах водородными колечками расходятся так, что образуют между собой углы порядка 100 градусов. Говорить о том, что эти углы равны точно ста семи градусам, было бы не совсем правильно: учитывая то, что отогнутые лепестки молекулы аммиака не могут в нормальных условиях не колебаться, углы эти имеют переменные значения. Указанные колебания, очевидно, усиливают тепловое поле молекулы, создаваемое в основном атомами водорода; поэтому аммиак — тоже газ. Подчеркнем, что во всех петлевых соединениях азот всегда трехвалентен. Соединения с помощью желобов атомы азота могут образовывать со всеми металлами и теми неметаллами, которые имеют свои открытые присасывающие желоба. Особняком в этом ряду стоит нитрид лития, который не требует для своего образования специальных условий. Атомы лития легко проникают внутрь “грейфера” атома азота и прилипают там своими желобами и желобами лепестков азота, у которых присасывающие стороны обращены вовнутрь; при этом лепестки расходятся, давая возможность атомам лития слипнуться между собой в центре. Длины лепестка хватает почти на весь присасывающий контур атома лития. В раскрытом виде три присасывающих желоба атома азота могут присоединить к себе атомы других элементов в разном количественном и дробном соотношении. В этом случае азот выступает в роли клея наподобие углерода и способствует упрочнению материалов: склеенные азотом металлы повышают свою твердость и тугоплавкость, сохраняя свои металлические свойства. Бесцветность азота объясняется опять же тем, что лепестки его атомов колеблются на частотах, не регистрируемых рецепторами человеческого глаза. Топология атома азота позволяет объяснить такую особенность азотных соединений, что в результате их переподсоединений может выделяться огромное количество тепла, а иногда такой процесс идет со взрывом. Молекулы с участием азота могут представлять собой либо пространственные конструкции, либо сугубо плоские; пространственные, да еще возбужденные молекулы вместе со своими тепловыми полями занимают очень большой объем, а плоские, наоборот, сравнительно малый. Поэтому, если молекуле представится возможность преобразоваться из пространственной в плоскую, то она сделает это с большим желанием: ее потенциальная энергия в этом случае перейдет в кинетическую; выделившееся тепло побудит соседние молекулы сделать то же самое; те, в свою очередь, подтолкнут другие молекулы, и процесс примет цепной характер в виде взрыва. Восьмой по счету химический элемент таблицы Менделеева — кислород; его атомная масса равна 15,999. Он — самый распространенный на Земле элемент; в атмосфере его 21 процент, в твердой оболочке Земли — 47 процентов; в океанах — 86 процентов. В нормальных условиях кислород — газ; температура кипения сжиженного кислорода равна минус 182,9 градуса Цельсия, а температура перехода из твердого состояния в жидкое — минус 218,7 градуса. В воздухе атмосферы атомы кислорода объединяются в молекулы; по два атома в каждой. Известна аллотропическая модификация кислорода — озон, молекула которого состоит из трех атомов. Озон возникает при воздействии ультрафиолетового излучения и при проскакивании электрического разряда (молнии). Кислород химически очень активен; по своей активности он уступает только фтору. Он соединяется практически со всеми элементами, исключая инертные газы. В соединениях с металлами он проявляет переменную и даже дробную валентность. Почти все реакции с участием кислорода относятся к типу экзотермических, то есть происходят с выделением тепла или даже света, а соединение с водородом происходит даже в форме взрыва. Еще более активен озон. Из соединений кислорода наиболее известна вода, молекула которой состоит из одного атома кислорода и двух атомов водорода; водород разнесен в молекуле на угол 104,5 градуса. Вода, больше известная как жидкость, входит основной составной частью в минералы, где предстает уже в твердом виде. Жидкая вода закипает при 100 градусах и замерзает при нуле градусов по Цельсию. В жидком состоянии вода имеет малую вязкость и большую теплоемкость. Известно, что в сплошной массе молекулы воды могут диссоциировать, то есть распадаться на составляющие атомы. Вода — хороший растворитель. С углеродом кислород образует углекислый газ, молекула которого содержит один атом углерода и два атома кислорода; при недостатке кислорода образуется угарный газ, молекула которого содержит уже по одному атому того или другого элемента. Самую большую химическую активность кислород проявляет в составе кислот. Он объединяется в них с азотом, серой, фосфором и другими элементами; замыкают молекулы кислот атомы водорода. Водные растворы кислот разъедают практически все металлы. Атомарный кислород тоже разъедает металлы, образуя окислы, но действует менее активно. Топология атома кислорода продолжает ту же треугольную тему, что была начата атомом азота: исходное кольцо-тор деформируется с трех сторон, выступы вытягиваются, шнуры сближаются; и заканчивается первый этап образования трехлучевой звезды с петлями на концах лучей. У азота такая звезда некоторое время сохраняется плоской и в такой форме успевает за это время найти себе подобную и присосаться к ней, образуя двухатомную молекулу. Размеры исходного тора атома кислорода несколько больше: номинальная длина его шнура составляет 29 400 эфирных шариков, то есть на 3700 шариков длиннее, чем у азота; поэтому возникает некоторая коррекция топологии атома. Одновременно с вытягиванием концов звезды происходит их сближение и закручивание; сблизившиеся любые два лепестка образуют между собой еще одну, вторичную петлю, а оставшийся в одиночестве третий лепесток заворачивается, создавая внешний присасывающий желоб, и накрывает ее своей петлей; это — второй промежуточный этап топологии атома кислорода. На третьем, последнем этапе сблизившиеся два лепестка сначала поворачиваются друг к другу “лицом”, то есть присасывающими сторонами, слипаются насколько это возможно, а затем загибаются и упираются макушками своих петель в присасывающий желоб завернувшегося одиночного лепестка; на этом топология одиночного атома кислорода завершается. Что же в конце концов получилось? А получилась в некотором роде уникальная форма атома: своим контурным, открытым наружу присасывающим желобом он похож на атом металла, но все же это — не металл; все его загнутые части оказываются напряженными, и по этой причине они неустойчивы, и атом пульсирует, создавая вокруг себя стоячее тепловое поле; значит, он — пушист, и эта пушистость не позволяет ему соединиться с такими же атомами, как он сам, и образовать металлическое тело. Если же он все же соединится с ними, например при образовании молекул, то происходит это с разгибом спаренных лепестков и с разворотом их петель, то есть с разрывом замкнутого контурного желоба. Получается так, что, пока атом кислорода находится в одиночестве, он — металл, а когда соединяется с другими атомами, то — уже не металл. Молекула кислорода состоит из двух атомов, объединившихся путем слипания петель спаренных лепестков и примыкающих к ним присасывающих желобов. Молекула также пушиста: слипанию атомов в ней противодействуют их закрученные как пружины одиночные лепестки, и это противодействие порождает ее пульсацию, выражающуюся в том, что слипшиеся парные лепестки будут периодически выдвигаться из молекулы — удлиняясь, и убираться внутрь — укорачиваясь. Соединение кислорода с водородом образует воду: в результате сильного теплового воздействия молекула кислорода распадается на атомы; их освободившиеся петли, не успев развернуться и слипнуться между собой, тотчас заполняются колечками атомов водорода; возникает знаменитая молекула аш-два-о. Бывшие ранее спаренными лепестки атома кислорода после подсоединения к их петлям атомов водорода расходятся под некоторым углом и успокаиваются. Успокаивается и вся молекула: несмотря на то, что присоединившиеся атомы водорода создают дополнительную пушистость, в целом пульсация молекулы воды оказывается несколько приглушенной, и в нормальных условиях она уже не является газообразной, а переходит в жидкость. Вода отличается от других жидкостей многими своими свойствами, и одно из них — постоянство вязкости при изменении температуры. Если молекулы других жидкостей, ускоряя свои тепловые движения, уменьшают взаимный контакт и становятся как бы менее привязанными друг к другу, то молекулы воды сохраняют взаимную связь практически постоянной; это объясняется тем, что их подвижность вызвана в основном пушистостью атомов водорода и загнутых одиночных лепестков, а она очень мало зависит от температуры. Конечно, общие тепловые колебания молекул могут сделать их пушистыми до газообразности (это происходит при кипении) или, наоборот, уменьшить подвижность до прекращения взаимного скольжения (явление образования льда), но в интервале между этими состояниями связи между молекул между собой сохраняются практически постоянными. Вода отличается еще очень большой своей теплоемкостью. У молекулы воды можно выделить следующие поглотители тепловых движений: это — загнутый в кольцо одиночный лепесток и два отогнутых (прямых) лепестка с водородными атомами на концах. Пульсирующее кольцо загнутого лепестка может иметь широкий диапазон амплитуд своих колебаний, то есть может накапливать большую энергию. Но основными поглотителями тепловых движений все же являются вытянутые лепестки; они представляют собой консоли с массами водородных атомов, отнесенными на их концы; момент инерции этих консолей — очень большой. Поглощая энергию внешних ударов, вытянутые лепестки лишь незначительно увеличивают амплитуду своих колебаний; и для того, чтобы раскачать их основательно, нужно приложить к ним много внешней энергии. Объяснение других свойств воды и кислорода, таких как способности растворять и окислять, кроется в накопительстве атомом кислорода и молекулой воды в целом большего количества электронов. Атом имеет очень длинные присасывающие желоба, обращенные наружу; на таких желобах может скапливаться очень много электронов. У молекулы воды дополнительные присасывающие наружные желоба возникают по контурам атомов водорода. Поэтому молекулу воды можно считать накопителем электронов. Большое скопление электронов является одной из причин диссоциации молекул воды: электроны, проникая в щели под атомами водорода, ослабляют их связи с атомами кислорода вплоть до их отделения. Другой причиной являются тепловые колебания консольных лепестков: молекула воды размахивает ими как деревья своими ветвями в сильный ветер; в общей массе жидкости молекулы лупят друг друга этими лепестками, как молотками; при этом атомы водорода на концах чувствуют себя не очень уютно. Точно также происходит растворение в воде твердых веществ. Сначала, уткнувшись своим консольным лепестком в атом (или молекулу) твердого вещества, молекула воды производит инъекцию электронов (шприцует их); электроны ослабляют межатомные связи вещества; а затем ударами своих лепестков, как дубинами, вода срывает непрочные атомы и молекулы со своих мест и поглощает их. Растворение в воде кислот, содержащих кислород, сопровождается диссоциацией, то есть частичным или полным отделением атомов водорода. Приблизительно также происходит окисление металлов. Сначала инъекцией электронов и ударами своих лепестков атомы кислорода, растворенные в воде, ослабляют крепление поверхностных атомов металла, а затем обволакивают их своими лепестками как щупальцами; при этом присасывающие желоба кислорода накладываются на присасывающие желоба металла и нейтрализуют их. Точно также ведет себя по отношению к металлу кислород, находящийся в составе кислот. Соединение их между собой происходит с помощью желобов, поэтому их количественное соотношение определяется соотношением длин желобов, и оно может быть некратным; отсюда — переменная и дробная валентность. Обволакивание атомов различных химических элементов с помощью щупальцев (лепестков) воды способствует успокоению пульсаций ее молекул: их колебания амортизируются соседними атомами. Лишившись своей подвижности, молекулы воды становятся средствами скрепления других атомов, то есть клеем как азот, как углерод, как бор или бериллий в подобной роли. Поэтому в минералах оказывается так много воды. Среди петлевых соединений кислорода можно выделит образование угарного и углекислого газов. При недостатке кислорода его атомы в первую очередь соединяются своими петлями с выкрученными петлями атомов углерода; его нормально замкнутые петли при этом не раскрываются; это — угарный газ. При избытке кислорода и при высокой температуре замкнутые петли углерода также раскрываются и соединяются с петлями других атомов кислорода; возникает углекислый газ. В указанных соединениях напряженность атомов углерода и кислорода уменьшается, то есть уменьшается их потенциальная энергия, и соответственно увеличивается кинетическая, тепловая энергия. Повышение температуры сопровождается выделением света: светятся атомы углерода. Из трех состояний кислорода: атомарного, молекулярного и озонного, — последнее — наиболее активное. Если у одиночного атома кислорода и молекулы парные лепестки замкнуты своими петлями и не совсем готовы для присоединения к другим атомам, то у озона они находятся в непрочном соединении между собой и легко раскрываются.
Дата добавления: 2014-12-25; Просмотров: 1219; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |