КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вычисление размеров рамки карты
Решение. Пример. Последовательность действий при вычислении картографической сетки легко уясняется из решения следующего примера. Рассчитать картографическую сетку проекции Меркатора для карты, охватывающей район с границами: js = 59°00,0'N; lw = 25°00,0'Ost; jN = 60° 15,0'N; lost = 28°20,0'Ost в масштабе mo = 1:200000 по главной параллели jо=60°. Меридианы сетки провести через 30'. 1. Расчет е и выбор Δl. Из табл. 4 Картографических таблиц по jо =60°N и масштабу mo =1:200000 выбираем е = 4,6501 мм. При невозможности воспользоваться Картографическими таблицами единица карты рассчитывается с применением таблиц логарифмов по формуле e = Po / Co Po = 930015; lg Ро = 5,96849 Со = 200000; lg Со = 5,30103, lg е = 0,66746, е = 4,6501 мм. Промежуток практически постоянного масштаба, т. е. широтный интервал между параллелями, выбирается из табл. 6 Картографических таблиц. В нашем примере он равен 13,1'. Округляя его в меньшую сторону, примем Δj =10'. jN = 60°15,0' N, DN = 4537,471', lg (DN - DS) = 2,17052, js = 59°00,0', DS = 4389,384', lg е = 0,66746, DN - DS = 148,087', lg b = 2,83798, b = 688,6 мм, lw = 25°00,0' Ost, lg (lo - lw) = 2,30103, lo = 28°20,0' Ost, lg е = 0,66746, lo - lw = 200', lg а = 2,96849, a = 930 мм. § 31. Поперечная цилиндрическая равноугольная проекция Гаусса При выполнении некоторых специальных навигационных задач проекция Меркатора, имеющая основными координатными линиями меридианы и параллели, оказывается недостаточно удобной. Так, например, чтобы вычислить географические координаты какой-либо точки для нанесения ее на карту, приходится прибегать к трудоемким и сложным формулам, затрачивая на вычисление много времени. Значительно проще такого рода задачи решаются с использованием прямоугольных координат вместо географических. Замена географических координат прямоугольными позволяет производить расчеты по несложным формулам плоской тригонометрии. Непрерывное изменение масштаба на карте в проекции Меркатора также представляет известное неудобство, так как пределы полосы с практически постоянным масштабом весьма ограничены. На практике нередко бывает удобнее иметь карту с незначительными искажениями длин и площадей, а также с масштабом, который можно практически принимать постоянным в пределах всего листа карты. Так, при выполнении ряда работ, требующих высокой точности, целесообразно применять проекцию, на плоскости которой изображение строится как план, где измеренные углы и расстояния переносятся на планшет без исправления поправками за искажение проекции. Для обеспечения этого требования проекция должна иметь малые искажения длин, не превышающие ошибок графических построений на планшете (0,2 мм). Измеренным на местности сферическим углам должны соответствовать на карте плоские углы с ничтожно малыми их искажениями. § 32. Сферические прямоугольные координаты В отличие от географических сферические координаты являются поверхностными координатами, представляющими собой дуги больших кругов, и выражаются в линейной мере — в километрах или в метрах. За начало счета сферических прямоугольных координат принимается точка пересечения экватора с одним из меридианов, называемым осевым.
По формуле тангенс катета прямоугольного сферического треугольника найдем tg {90 - (X / R)} = tg (90 - j) cos (l - Lo) или ctg (X/R) = ctg j cos (l - Lo), (113) где Y / R и X / R - дуги больших кругов - сферические прямоугольные координаты, выраженные в радианах; X и Y - сферические прямоугольные координаты, выраженные в линейных единицах; R - радиус Земли. Геометрическое место точек, имеющих одинаковую ординату У, представляет собой малый круг аАоО.1 (рисунок вверху), плоскость которого параллельна плоскости осевого меридиана. Радиус такого малого круга зависит от величины сферической ординаты Y и определяется по формуле r = R cos (Y/R). (114) Знак угла сближения меридианов определяется расположением точек относительно осевого меридиана. Для точек, расположенных восточнее осевого меридиана, угол сближения меридианов будет иметь знак плюс; для точек, находящихся западнее осевого
Дата добавления: 2014-12-25; Просмотров: 1137; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |