![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определение. Введенная выше случайная величина U называетсястатистикой Манна — Уитни
Вычислив значение 1. Зададим уровень значимости a или выберем метод, связанный с определением наименьшего уровня значимости статистики U, который описан ниже. 2. Для правосторонних альтернатив найдем по таблицам такое критическое значение
При этом критическая область для гипотезы Н против правосторонний альтернатив будет иметь вид:
При проверке Н против левосторонних альтернатив надо найти критическое значение Здесь критическая область примет вид
В таблицах обычно приводятся критические значения, соответствующие числам a из ряда 0.05, 0.025, 0.01, 0.005, 0.001. Ввиду дискретного характера распределения вероятностей между возможными значениями случайной величины U, приведенные выше уравнения не всегда имеют точное решение, и в таблицах они приводятся приближенно. Для вычисления по таблицам значении
вытекающим из симметрии распределения статистики U относительно своего центра 3. Отвергнем гипотезу Н против правосторонних (левосторонних) альтернатив при попадании 4. При проверке Н против двусторонних альтернатив в качестве критического множества можно взять объединение
т.е. отвергнуть Н, если происходит одно из двух ранее упомянутых критических событий. Ввиду уже отмеченной симметрии этому критерию можно дать вид При таком выборе критического множества уровень значимости удваивается. Теперь он равен 2 a (с теми же оговорками насчет дискретности распределения U, что были сделаны выше). Если мы желаем сохранить и здесь уровень значимости a, надо взять Приближение для больших выборок. Смотри п. 5.2 и связь между статистикой Манна-Уитни и статистикой Уилкоксона, указанную там же в разделе «обсуждение». Обсуждение. Укажем некоторые свойства статистики U и соображения, приводящие к описанному выше методу проверки гипотезы. Распределение вероятностей U при гипотезе Н. Хотя статистика Манна-Уитни является суммой одинаково распределенных случайных величин, принимающих значения 0 и 1, она не имеет биномиального распределения, так как эти величины являются зависимыми (например, зависимы результаты сравнения Однако расчет распределения статистики U значительно упрощается тем, что при выполнении гипотезы Н это распределение не зависит от закона распределения выборок (если эти распределения непрерывны). Распределение U при гипотезе Н зависит только от объемов выборок — m и n. В справочниках приводятся таблицы, по которым можно найти вероятность Заметим, что при справедливости гипотезы H (т.е. при совпадении законов распределения F и G) выполняется Распределение статистики U при нарушении гипотезы. Рассмотрим, как может вести себя U при различных альтернативах. В отличие от поведения U при гипотезе, здесь распределение U зависит от F и G, поэтому мы можем описать его свойства лишь для отдельных типов альтернатив. Проще всего указать свойства U для односторонних альтернатив: правосторонних (если F ³ G), или левосторонних (если F £ G). Легко видеть, что для правосторонних альтернатив выполняется Итак, для односторонних альтернатив статистика Манна-Уитни имеет ясные свойства, поэтому на ее основе можно построить критерий для проверки гипотезы Н против таких альтернатив. Метод проверки гипотезы. В связи с таким поведением статистики U для проверки гипотезы Н против указанных выше возможных альтернатив разумно предложить следующее правило: отвергнуть Н, если наблюденное U (в дальнейшем Силу таких доводов против Н: F = G в пользу, например, правосторонней альтернативы Рекомендация изменяется очевидным образом, если с Н конкурируют левосторонние альтернативы. Наконец, в случае двусторонних альтернатив надо вычислить вероятность и в зависимости от того, насколько она мала, отвергнуть гипотезу. Описанный способ действий имеет определенные преимущества перед стандартной процедурой проверки статистических гипотез, как она описана в пункте 2. Главное то, что здесь не приходится заранее выбирать, уровень значимости, что всегда выглядит несколько произвольно. Описанный подход автоматически доставляет нам тот наименьший уровень значимости, на котором (по имеющимся наблюдениям) можно отвергнуть гипотезу Н в пользу соответствующей альтернативы. В данном случае есть и еще одно дополнительное преимущество: как мы уже отмечали выше, из-за дискретности распределения U традиционные номинальные уровни значимости типа 0.05, 0.025, 0.001 и т.д. могут быть достигнуты лишь приближенно. В обсуждаемом методе проверки приближение исчезает: мы получаем точное значение вероятности, если обращаемся к достаточно подробным таблицам распределений U. Совпадения. Выше отмечалось, что из условия непрерывности распределений F и G следует отсутствие повторений в выборках. На практике же такие повторения встречаются часто. Во многих случаях причиной этого является не нарушение исходных предположений, а ограниченная точность при записи наблюдений. Допустим, что некоторые элементы выборки икс совпали с некоторыми элементами из выборки игрек, т.е. При наличии совпадающих наблюдений получаемые при использовании описанных критериев выводы имеют приближенный характер, и эти приближения тем хуже (и выводы тем сомнительнее), чем больше среди наблюдений совпадающих, т.е. чем сильнее отступление от исходных математических предположений. В тех случаях, когда результаты (X и Y) могут принимать лишь ограниченное число значений (что влечет за собой большое количество совпадений), этот метод применять не следует. К сожалению, четкого разграничения в этом вопросе сделать нельзя.
Дата добавления: 2014-12-26; Просмотров: 412; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |