Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

BCD-коды с избытком 3




Иначе говоря, это коды чисел из системы (BCD + 3). В этом коде каждая десятичная цифра ai представляется в виде двоичного эквивалента суммы ai+3. В отличие от BCD-кода код BCD+3 – самодополняющийся, но не имеющий свойства взвешенности. Применяется наиболее часто в десятичной арифметике, так как при выполнении двоичного суммирования легко выделить десятичный перенос.

Возможны следующие два случая сложения чисел в BCD-коде +3:

1) a + b ≤ 9; [ (a + 3) + (b + 3) ] ≤ 15.

И, следовательно, в тетраде суммы будут лишние 6 единиц. Чтобы тетрада суммы осталась тоже с избытком 3, нужно вычесть 3.

2) a + b ≥ 10; [ (a + 3) + (b + 3) ] ≥ 16.

Здесь во всех случаях возникает шестнадцатеричный перенос, вместе с которым тетраду суммы покинут и шесть избыточных единиц; чтобы тетрада суммы осталась с избытком 3, надо добавить 3.

Если складываются числа с разными знаками, то избыток в тетраде суммы будет равен нулю и суммирование, таким образом, сводится к правилам суммирования в BCD-коде.

Пример. Выполнить сложение чисел 169 и 378 в BCD-коде +3.

0.0100 1001 1100

A = 169 0.0110 1010 1011

B = 378 0.1011 0100 0111

A + B = 547 0011 0011 0011

0.1000 0111 1010

8 7 10

Пример. Выполнить вычитание из числа 378 числа 169 в BCD-коде +3.

A = 378 0.0110 1010 1011

B = 1691.1011 0110 0011

A - B = 209 1 0.0010 0000 1110

циклический перенос 1

0.0010 0000 1111

+ 0011 -0011 -0011

0.0101 0011 1100

5 3 12

Пример. Выполнить вычитание из числа 169 числа 378 в BCD-коде +3.

A = 169 0.0100 1001 1100

B = 3781.1001 0101 0100

A - B = -209 1.1101 1111 0000

-0011 -0011 +1100

1.1010 1100 0011

- 0101 0011 1100

5 3 12

Правило. Если из тетрады был перенос, надо добавить +0011, если переноса не было, – 0011 (добавить 1100), независимо от знака слагаемых и знака суммы.

 




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 650; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.