Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные понятия теории автоматов




Введение в теорию конечных автоматов

 

Все рассмотренные выше устройства относятся к классу комбинационных схем, то есть дискретных устройств без памяти. Наряду с ними в цифровой технике широкое распространение получили последовательностные автоматы, или, иначе, комбинационные схемы, объединенные с элементами памяти.

Под термином автомат можно понимать некоторое реально существующее устройство, функционирующее на основании как сигналов о состоянии внешней среды, так и внутренних сигналов о состоянии самого автомата. В этом плане ЭВМ может быть рассмотрена как цифровой автомат. Под цифровым автоматом понимается устройство, предназначенное для преобразования цифровой информации. С другой стороны, под термином автомат можно понимать математическую модель некоторого устройства. Общая теория автоматов подразделяется на две части: абстрактную и структурную теорию автоматов. Различие между ними состоит в том, что абстрактная теория абстрагируется от структуры как самого автомата, так и входных и выходных сигналов. В абстрактной теории анализируются переходы автомата под воздействием абстрактных входных слов и формируемые на этих переходах абстрактные выходные слова.

В структурной теории рассматривается прежде всего структура как самого автомата, так и его входных и выходных сигналов, способы построения автоматов из элементарных автоматов, способы кодирования входных и выходных сигналов, состояний автомата.

В соответствии с этим принято различать две модели автоматов: структурную и абстрактную. Абстрактная модель применяется при теоретическом рассмотрении автоматов. Структурная модель служит для построения схемы автомата из логических элементов и триггеров и предназначена для выполнения функции управления.

Абстрактный автомат – это математическая модель цифрового автомата, задаваемая шестикомпонентным вектором S=(A,Z,W,d,l,a1), где А={aa,…,am} – множество внутренних состояний абстрактного автомата; Z=[z1,…,zk} и W={w1,…,wl} – соответственно множества входных и выходных абстрактных слов; d - функция переходов; l - функция выходов; a1 – начальное состояние автомата. Абстрактный автомат может быть представлен как устройство с одним входом и одним выходом (рис. 35), на которые подаются абстрактные входные слова и формируются абстрактные выходные слова.

Понятие состояние автомата используется для описания систем, выходы которых зависят не только от входных сигналов, но и от предыстории, то есть информации о том, что происходило с автоматом в предыдущий интервал времени. Состояние автомата позволяет устранить время как явную переменную и выразить выходные сигналы как функцию состояний и входных сигналов.

По виду функции выходов все множество автоматов можно подразделить на два класса: автоматы Мили и автоматы Мура.

Автоматами Мура, или автоматами первого типа, называют автоматы, для которых выходной символ w(t) не зависит явно от входного символа z(t), а определяется только состоянием автомата в момент времени t. Закон функционирования автомата Мура может быть описан системой уравнений:

К автоматам второго типа, или автоматам Мили, относятся автоматы, поведение которых может быть описано системой уравнений:

Следовательно, в отличие от автомата Мура для автомата Мили выходной символ w(t) зависит не только от текущего состояния, но и от входного символа.

Между моделями автоматов Мили и Мура существует соответствие, позволяющее преобразовать закон функционирования одного из них в другой.

Совмещенная модель автомата (С-автомат). Абстрактный С-автомат – математическая модель дискретного устройства, определяемого вектором S=(A,Z,W,U,d,l1,l2,a1), где А, Z, d и а1 определены выше, а W={w1,…,wl} и U={u1,…,ul} – выходной абстрактный алфавит автомата Мили и Мура соответственно, l1 и l2 - функции выходов. Абстрактный С-автомат может быть представлен как устройство с одним входом, на который поступают слова из входного алфавита Z, и двумя выходами (рис. 36), на которых формируются абстрактные выходные слова из выходных алфавитов W и U.

Отличие С-автомата от моделей автоматов Мили и Мура заключается в том, что он одновременно реализует две функции выходов l1 и l2, каждая из которых характерна для одной из двух моделей.

Автомат S называется конечным, если конечны множества A, Z и W, и детерминированным, если, находясь в некотором состоянии, он не может перейти более чем в одно состояние под действием одного и того же входного символа. Если в автомате выделено начальное состояние а1, то он называется инициальным. Состояние аs называется устойчивым, если для любого zkÎZ, такого что as=d(am,zk), as=d(as,zk), то есть если автомат из состояния am в перешел в состояние as под действием входного слова zk , то выйти из этого состояния он может только под действием другого входного слова. Автомат S является асинхронным, если каждое его состояние устойчиво, иначе синхронным. Автомат называется полностью определенным, если область определения функции d совпадает с множеством пар (am,zk), а функции l для автомата Мили − с множеством пар (am,zk), Мура − с множеством am. У частичного автомата функции d и l определены не для всех пар.

 

Способы задания автоматов

Закон функционирования автоматов может быть задан в виде систем уравнений, таблиц, матриц и графов. Под законом функционирования понимается совокупность правил, описывающих переходы автомата в новое состояние и формирование выходных символов в соответствии с последовательностью входных символов.

В зависимости от типа автомата при табличном задании закона функционирования автомата используются либо таблицы переходов и выходов (автомат Мили), либо совмещенная таблица переходов и выходов (автомат Мура). С помощью табл. 26 и 27 (таблицы переходов и таблицы выходов соответственно) задан закон функционирования абстрактного автомата Мили, для которого

A={a1,a2,a3,a4}, Z={z1,z2,z3}, W={w1,w2,w3,w4,w5}.

Строки таблиц отмечены входными символами (элементы множества Z), а столбцы − состояниями (элементы множества А). Входные символы и состояния, которыми помечены строки и столбцы, относятся к моменту времени t. В табл. 26 (таблице переходов) на пересечении строки zi(t) и столбца am(t) ставится состояние as(t+1)=d(am(t),zi(t)). В табл. 27 (таблице выходов) на пересечении строки zi(t) и столбца am(t) ставится выходной символ w(t)=l(am(t),zi(t)), соответствующий переходу из состояния аm в состояние as. Таким образом, по таблицам переходов и выходов можно проследить последовательность работы автомата. Так, например, в начальный момент времени t=0 автомат, находясь в состоянии a1 (первый столбец), под действием входного символа z1 может перейти в состояние a2, при этом выходной символ не формируется; под действием входного символа z2 − в состояние a4 с формированием выходного символа w2; под действием символа z3 − в состояние a3 с формированием выходного символа w3. Далее если на вход автомата, установленного в исходное состояние аm ÍA, в моменты времени t=1,2,…,n подается некоторая последовательность букв входного алфавита (входных символов) ziÍZ, то на выходе автомата будут последовательно формироваться буквы выходного алфавита (выходные символы) wjÍW, при этом автомат будет переключаться в состояния asÍA. Следовательно, с помощью таблиц переходов и выходов можно получить выходную реакцию автомата на любое входное слово.

Как отмечалось выше, для автомата Мура выходной символ не зависит от входного, а определяется только текущим состоянием автомата. Это позволяет для автомата Мура объединить обе таблицы (переходов и выходов) в одну совмещенную таблицу. В совмещенной таблице переходов и выходов каждый столбец отмечается состоянием am ÍА и выходным символом w(t)=l(a(t)), соответствующим этому состоянию.

Другим, более наглядным способом описания закона функционирования автомата является представление его в виде графа. Граф автомата – ориентированный граф, вершины которого соответствуют состояниям, а дуги − переходам между ними. Дуга, направленная из вершины am в вершину as, соответствует переходу из состояния am в as. В начале дуги записывается входной символ zi, влияющий на переход as=d(am,zi), а символ wj записывается в конце дуги (автомат Мили) или рядом с вершиной (автомат Мура). На рис. 37 приведен граф автомата Мили, соответствующий закону функционирования, описанному выше (см. табл. 26 и 27).




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 1278; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.