КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дифференциальные уравнения равновесия покоящейся жидкости
Следствия основного уравнения гидростатики Во-первых, из основного уравнения гидростатики следует, что для любой точки жидкости в состав величины давления входит P0 - давление, которое приложено к граничной поверхности жидкости извне. Эта составляющая одинакова для любой точки жидкости. Поэтому из основного уравнения гидростатики следует закон Паскаля, который гласит: давление, приложенное к граничной поверхности покоящейся жидкости, передаётся всем точкам этой жидкости по всем направлениям одинаково. Следует подчеркнуть, что давление во всех точках не одинаково. Одинакова лишь та часть (составляющая), которая приложена к граничной поверхности жидкости. Закон Паскаля – основной закон, на основе которого работает объёмный гидропривод, применяемый в абсолютном большинстве гидросистем технологических машин. Вторым следствием является тот факт, что на равной глубине в покоящейся жидкости давление одинаково. В результате можно говорить о поверхностях равного давления. Для жидкости, находящейся в абсолютном покое или равномерно движущейся, эти поверхности – горизонтальные плоскости. В других случаях относительного покоя, которые будут рассмотрены ниже, поверхности равного давления могут иметь другую форму или не быть горизонтальными. Существование поверхностей равного давления позволяет измерять давление в любой точке жидкости.
Дифференциальные уравнения равновесия покоящейся жидкости иначе называют дифференциальными уравнениями Эйлера. Они получены для общего случая относительного покоя жидкости. Возможны следующие варианты относительного покоя.
Рисунок 10 – Схема для нахождения дифференциального уравнения Эйлера
Рассмотрим в произвольной системе координат X,Y,Z произвольную точку A. Вблизи этой точки выделим элементарный объём в форме прямоугольного параллелепипеда, грани которого для простоты математических выражений параллельны координатным плоскостям. Заметим следующее: - давление является функцией координат (при этом в любой точке оно по всем направлениям одинаково), - при переходе к точкам Ax(Ay, Az ) меняется только одна координата на бесконечно малую величину dx(dy, dz), поэтому функция получает приращение только по одной координате, - это приращение равно частному дифференциалу по соответствующей координате Таким образом, разность давлений, действующих на противоположные грани параллелепипеда (внутрь рассматриваемого объёма), перпендикулярные соответствующим осям, будет иметь вид:
(35) Исходя из этого, определим разности сил, вызванных давлением, в проекции на оси координат (36) Кроме сил давления на параллелепипед будут действовать инерционные силы в общем случае определяемые массой и ускорениями X, Y, Z на соответствующие оси (37) Учитывая, что параллелепипед находится в покое, сумма сил, действующих на него, равна 0: (38) Разделив систему уравнений сил на массу рассматриваемого параллелепипеда, получим систему уравнений Эйлера: (39) На практике, чтобы избавиться от частных производных, используют одно уравнение, заменяющее систему. Для этого первое уравнение умножают на dx, второе на dy, третье на dz и складывают их: (40) В этой формуле сумма в скобках является полным дифференциалом давления, который в результате оказывается равным (41) Полученное уравнение показывает, как изменяется давление при изменении координат внутри покоящейся жидкости для общего случая относительного покоя. Это уравнение впервые получил Леонард Эйлер в 1755
Дата добавления: 2014-12-26; Просмотров: 970; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |