Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Рабочие характеристики асинхронного двигателя




 

Рабочие характеристики асинхронного двигателя (рис. 13.7) представляют собой графически выраженные зависимости частоты

вращения n2, КПД η, полезного момента (момента на валу) М2, коэффициента мощности cos φ, и тока статора I1 от полезной мощности Р2 при U1 = const f 1 = const.

Скоростная характеристика n2 = f (P2). Частота вращения ро­тора асинхронного двигателя

n2 = n1(1 - s).

Скольжение по (13.5)

s = Pэ2/ Pэм, (13.24)

т. е. скольжение дви­гателя, а следователь­но, и его частота вра­щения определяются отношением электри­ческих потерь в рото­ре к электромагнитной мощности Рэм. Пре­небрегая электричес­кими потерями в рото­ре в режиме холостого хода, можно принять Рэ2 = 0, а поэтому s ≈ 0 и n20 ≈ n1. По мере увеличения нагрузки на валу

Рис. 13.7. Рабочие характеристики асинхрон­ного двигателя

 

двигателя отношение (13.24) растет, достигая значений 0,01—0,08 при но­минальной нагрузке. В соответствии с этим зависимость n2 = f (P2) представляет собой кривую, слабо наклоненную к оси абсцисс. Однако при увеличении активного сопротивления ротора r2' угол наклона этой кривой увеличивается. В этом случае изме­нения частоты вращения n2 при колебаниях нагрузки Р2 возраста­ют. Объясняется это тем, что с увеличением r2' возрастают элек­трические потери в роторе [см. (13.3)].

Зависимость М2 =f(P2). Зависимость полезного момента на валу двигателя М2 от полезной мощности Р2 определяется выражением

M2 = Р2/ ω2 = 60 P2/ (2πn2) = 9,55Р2/ n2, (13.25)

где Р2 — полезная мощность, Вт; ω2 = 2πf 2/ 60 — угловая частота враще­ния ротора.

Из этого выражения следует, что если n2 = const, то график М2 = f 22) представля­ет собой прямую линию. Но в асинхрон­ном двигателе с увеличением нагрузки Р2 частота вращения ротора уменьшается, а поэтому полезный момент на валу М2 с увеличением нагрузки возрастает не­ сколько быстрее нагрузки, а следовательно, график М2 = f (P2) имеет криволинейный вид.

 

Рис. 13.8. Векторная диаграмма асинхронного

двигателя при небольшой нагрузке

 

Зависимость cosφ1 = f (P2). В связи с тем что ток статора I1 имеет реактивную (индуктивную) составляющую, необходимую для созда­ния магнитного поля в статоре, коэффициент мощности асинхронных двигателей меньше единицы. Наименьшее значение коэффициента мощности соответствует режиму х.х. Объясняется это тем, что ток х.х. I0 при любой нагрузке остается практически неизменным. Поэтому при малых на­грузках двигателя ток статора невелик и в значительной части является реак­тивным (I1 ≈ I0). В результате сдвиг по фазе тока статора , относительно на­пряжения , получается значительным (φ1 ≈ φ0), лишь немногим меньше 90° (рис. 13.8). Коэффициент мощности асинхронных двигателей в режиме х.х. обычно не превышает 0,2. При увеличении нагрузки на валу двигателя растет активная составляющая тока I1 и

 

 

Рис. 13.9. Зависимость cos φ1,от нагрузки при

соединении обмотки статора звездой (1) и треугольником (2)

 

коэффициент мощности возрастает, достигая наибольшего значения (0,80—0,90) при нагрузке, близкой к номинальной. Дальнейшее увелиичение нагрузки сопровождается уменьшением cosφ1 что объясня­ется возрастанием индуктивного сопротивления ротора (x2s) за счет увеличения скольжения, а следовательно, и частоты тока в роторе. В целях повышения коэффициента мощности асинхронных двигателей чрезвычайно важно, чтобы двигатель работал всегда или по крайней мере значительную часть времени с нагрузкой, близкой к номиналь­ной. Это можно обеспечить лишь при правильном выборе мощности двигателя. Если же двигатель работает значительную часть времени недогруженным, то для повышения cosφ1, целесообразно подводимое к двигателю напряжение U1 уменьшить. Например, в двигателях, работающих при соединении обмотки статора треугольником, это мож­но сделать пересоединив обмотки статора в звезду, что вызовет уменьшение фазного напряжения в раз. При этом магнитный поток статора, а следовательно, и намагничивающий ток уменьшаются примерно в раз. Кроме того, активная составляющая тока статора несколько увеличивается. Все это способствует повышению коэффи­циента мощности двигателя. На рис. 13.9

представлены графики зависимости cosφ1, асинхронного двигателя от нагрузки при соединении обмоток статора звездой (кривая 1) и треугольником (кривая 2).




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 1412; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.