Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Модальная матрица




Формула Бохера

Можно записать полезную рекуррентную формулу, выражающую коэффициенты характеристического уравнения через следы матриц различного порядка Tk = Tr(Ak):

Эта формула, известная как формула Бохера, эффективна при вычислении коэффициентов характеристического уравнения с помощью компьютерной программы.

Пример. Найти характеристические числа следующей заданной матрицы А:

.

По формуле Бохера: a1 = – T1= – ( 2 + 1 1 )= – 2. Произведение матрицы А на себя:

откуда

Аналогично

откуда

Следовательно, характеристическое уравнение имеет вид:

λ +2 λ –5 λ =(λ –1)(λ +2)(λ –3)=0.

Найдем характеристические числа: λ1 = 1, λ2 = – 2, λ3 = 3.

 

Для каждого из n характеристических чисел λi (i=1,2,…,n) матрицы А (в предположении, что все они различны) можно получить решение уравнения [ λ E A ] x = 0. Это векторно-матричное уравнение можно представить в виде системы уравнений

Векторы x i, представляющие собой решения данной системы уравнений, являются характеристическими векторами матрицы A. Поскольку эта система уравнений однородная, то и kixi, где ki – произвольная скалярная величина, также служит решением. Поэтому эта система уравнений определяет однозначно только направление каждого из x i.

Матрица, образованная векторами-столбцами kixi, называется модальной матрицей. (Модальная – от слова “ mode ”, означающего «частота». Так называемые «частоты», описывающие динамику линейной системы, могут быть выражены в виде составляющих движения вдоль характеристических векторов).

При различных характеристических числах столбцы модальной матрицы могут выбираться равными или пропорциональными произвольному столбцу присоединенной матрицы Adj [ λ E A ].

Это вытекает из того факта, что [ λ E A ] имеет ранг n – 1. Поскольку определитель | λ E A |= 0 (как мы уже выяснили), ранг матрицы Adj [ λ EA ] должен быть меньше n, однако при этом он не может быть меньше n – 1, так как тогда равнялись бы нулю все (n – 1) миноров строки определителя | λ EA |, что, в свою очередь, потребовало бы, чтобы

Отсюда следует, что λi является кратным корнем исходной системы уравнений, а это противоречит предположению о том, что характеристические числа различны. Таким образом, матрица [ λ EA ] имеет ранг (n – 1 ), поэтому из определения присоединенной матрицы следует, что столбцы модальной матрицы пропорциональны произвольному ненулевому столбцу Adj [ λ EA ]. Ввиду линейной зависимости столбцов Adj [ λ EA ] для данного λi выбор каждого λi определяет только один столбец модальной матрицы.

Пример. Найти характеристические числа и модальную матрицу, соответствующую матрице А:

.

Характеристическое уравнение находим из условия | λ E A |=0:

Характеристические числа: λ1 = 1, λ2 = – 2, λ3 = 3.

Присоединенная матрицаравна:

Чтобы найти модальную матрицу, необходимо в присоединенную матрицу подставить значение собственных (характеристических) чисел.

При λ1 = 1присоединенная матрица равна

При λ2 = – 2присоединенная матрица равна

При λ3 = 3присоединенная матрица равна

Поскольку характеристические векторы единственным образом определяют только направление, то умноженные на скалярную величину, они также будут удовлетворять уравнению

.

Следовательно, модальная матрица имеет вид:

Каждый столбец данной модальной матрицы служит характеристическим вектором в одномерном векторном пространстве. Три столбца модальной матрицы образуют базис в соответствующем трехмерном векторном пространстве.

Выше рассматривалась модальная матрица при различных характеристических числах А. В случае кратных характеристических чисел и несимметрической А определение независимых модальных столбцов не очевидно, так как не существует однозначного соответствия между порядком кратности корня характеристического уравнения и дефектом соответствующей характеристической матрицы [ λ E A ]. Однако и в этом случае вопрос построения модальной матрицы решается положительно, хотя и более сложно.

 




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 3312; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.