КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Резонанс токов и напряжений
Резонанс токов: Рассмотрим цепь переменного тока, которая содержит параллельно включенные катушку индуктивностью L и конденсатор емкостью С (рис. 1). Сделаем допущение для простоты, что активное сопротивление обеих ветвей настолько мало, что им можно пренебречь. Если приложенное напряжение изменяется по закону U= Umсosωt, то (см. предудущий раздел формулу (11)) в ветви цепи 1С2 течет ток амплитуда которого (см. предудущий раздел формулу (10)) при условии R=0 и L=0: Начальная фаза φ1 этого тока (см. предудущий раздел формулу (9)) (1) Аналогично, сила тока в ветви цепи 1L2 амплитуда которого находится из формулы (10) предыдущего раздела при условии R=0 и С=∞: Начальная фаза φ2 этого тока (2) Из сравнения выражений (1) и (2) следует, что разность фаз токов в ветвях 1С2 н 1L2 равна φ1-φ2 = π, т. е. токи в ветвях являются противоположными по фазе. Амплитуда силы тока во внешней (неразветвленной) цепи Если , то и . Явление резкого уменьшения амплитуды силы тока во внешней цепи, которая питает параллельно включенные конденсатор и катушку индуктивности, при приближении частоты ω приложенного напряжения к резонансной частоте ωrez называется резонансом токов (параллельным резонансом). В данном случае для резонансной частоты получили такое же значение, как и при резонансе напряжений (см. предыдущий раздел). Амплитуда силы тока Im оказалась равна нулю, поскольку активным сопротивлением контура пренебрегли. Если сопротивление R не равно нулю, то разность фаз φ1-φ2 будет равна π, поэтому при резонансе токов амплитуда силы тока Im будет не равна нулю, но примет наименьшее возможное значение. Значит, при резонансе токов во внешней цепи токи I1 и I2 компенсируются и сила тока I в подводящих проводах достигает минимального значения, который обусловлен только током через резистор. При резонансе токов силы токов I1 и I2 могут быть значительно больше силы тока I. Рассмотренный здесь контур оказывает большое сопротивление переменному току с частотой, которая близка по значению к резонансной. Поэтому это свойство резонанса токов применяется в резонансных усилителях, которые позволяют выделять одно определенное колебание из сигнала сложной формы. Более того, резонанс токов применяется в индукционных печах, где нагревание металлов производится вихревыми токами. В них емкость конденсатора, который включен параллельно нагревательной катушке, подбирается таким образом, чтобы при частоте генератора получился резонанс токов, в результате чего сила тока через нагревательную катушку будет гораздо больше, чем сила тока в подводящих проводах. РЕЗОНАНС НАПРЯЖЕНИЙ Резонанс напряжений, или последовательный резонанс, наблюдается в случае, когда генератор переменной эдс нагружен на соединенные последовательно L и С контура (рис.1 а), т.е. включен внутри контура. В такой цепи имеется активное сопротивление г и общее реактивное сопротивление х, равное Разность хL, и xC берется потому, что индуктивное и емкостное сопротивления оказывают противоположные влияния на ток. Первое вызывает отставание по фазе тока от напряжения, а второе, наоборот, создает отставание напряжения от тока. Для собственных колебаний xL и хс равны друг другу. Если частота генератора равна частоте контура, то для тока, создаваемого генератором, xL и хC также одинаковы. Тогда общее реактивное сопротивление х станет равным нулю и полное сопротивление цепи для генератора равно только одному активному сопротивлению, которое в контурах имеет сравнительно небольшую величину. Благодаря этому ток значительно возрастает и устраняется сдвиг фаз между напряжением генератора и током. Резонанс напряжений выражается в том, что полное сопротивление контура становится наименьшим и равным активному сопротивлению, а ток становится максимальным. Условием резонанса напряжений является равенство частот генератора и контура f = fo, или равенство индуктивного и емкостного сопротивлений для тока генератора: xL = хC. Когда частота генератора больше частоты контура, индуктивное сопротивление преобладает над емкостным и контур представляет для генератора сопротивление индуктивного характера. Если частота генератора меньше частоты контура, то емкостное сопротивление больше индуктивного и контур для генератора является сопротивлением емкостного характера. В любом из этих случаев при отклонении от резонанса полное сопротивление контура возрастает по сравнению а его величиной при резонансе. На (рис.1 б) показаны графики изменения полного сопротивления контура z и тока I при изменении частоты генератора f. Для расчета сопротивления контура и тока при резонансе напряжений служат простые формулы: При резонансе напряжение на катушке или на конденсаторе в Q раз больше, чем напряжение генератора, равное U — Ir. Напряжение на L или С равно UL = Uc = р. Поэтому Чем выше добротность контура Q, тем больше увеличение напряжения при резонансе.
Дата добавления: 2015-04-24; Просмотров: 1447; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |