Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геометрическая интерпретация задачи линейного программирования




Каждой паре чисел х 1 и х 2 поставим в соответствие точку плоскости (2-мерного пространства) с координатами х 1 и х 2, тогда каждое ограничение (2.2.1) задает полупространство, а вся система (2.2.1) определяет многоугольник (в n -мерном пространстве – многогранник), полученный в результате их пересечения. В общем случае многогранник может быть неограниченным или пустым (система неравенств противоречива).

В примере 2.2.1 множество допустимых планов соответствует на плоскости множеству точек многоугольника OABCD(рис 2.2.1.).

Целевая функция F=5 х 1 + 6 х 2 определяет на плоскости семейство прямых линий (в n -мерном пространстве – плоскостей), параллельных друг другу, причем, чем дальше прямая от точки О, тем большее значение принимает целевая функция. Таким образом, оптимальное решение будет в точке многоугольника OABCD, где целевая функция касается этого многоугольника при удалении от точки О.

х 2                            
11 (I)                          
10                            
9                            
8                            
7F                            
6         n                  
5A   B                        
4                            
3 n2     C         (III)          
2             (II)              
1 n1 2 3 4 5 D 6 7 8 9 10 11 12 14 15

O Рис.2.2.1. Графическое представление задачи 2.2.1. х 1

 

В нашем примере это будет вершина многоугольника С с координатами (примерно) х 1=4.5; х 2=3. Для точного определения координат точки С рассмотрим уравнения прямых, пересечение которых ее образовало.

Получаем систему из двух уравнений:

2 х 1 + 1 х 2 = 12,

2 х 1 + 3 х 2 = 18,

решив которую получим точные значения х 1=4.5; х 2=3.

Метод решения системы линейных уравнений может быть использован любой, однако, в целях сокращения объема вычислений при дальнейшем изложении предлагается метод Крамера.

Напомним кратко его суть:

Для решения системы

a 11 х 1 + a 12 х 2 = b 1,

a 21 х 1 + a 22 х 2 = b 2,

вычисляем D = a 11 a 22 - a 12 a 21,

D1 = b 1 a 22 - a 12 b 2,

D2 = a 11 b 2 - b 1 a 21,

и затем х 1 = D1 / D; х 2 = D2 / D.

В нашем примере: D=2´3 – 1´2 = 4,

D1 = 12´3 – 1´18 = 18,

D2 = 2 ´18 – 12 ´2 = 12,

откуда х 1 = 18/4 = 4.5, х 2 = 12/4 = 3 (совпало с первоначальным приближением).

Вычислим значение целевой функции в точке С:

F = 5 ´ 4.5 + 6 ´3 = 40.5.

Таким образом мы решили поставленную задачу, нашли объемы производства х 1 первого и х 2 второго вида продукции, удовлетворяющие ограничениям (2.2.1) и доставляющие максимальное значение целевой функции F = 40.5 усл.ед.

Пример 2.2.2. Рассмотрим еще одну задачу (ее часто называют задачей о диете, хотя аналогичной математической моделью можно описывать задачи, ничего общего с диетой не имеющие).

Таблица 2.2.2

Виды кормов Содержание в 1 кг Себестоимость 1 кг (усл. ед).
Кормовых ед. Белок (г) Кальций (г)
Сено (х 1) 0.5     1.5
Концентраты (х 2)       2.5
Норматив        

Под нормативом понимается необходимый минимум питательных веществ суточного рациона. В этой задаче необходимо найти такие объемы кормов х 1, х 2, чтобы обеспечить содержание в них кормовых единиц, белка и кальция не менее нормативного при минимальной стоимости. Опять же предполагая, что количество полезных веществ, а также стоимость пропорциональны объемам кормов, получаем следующую математическую модель задачи:

(I) 0.5 х 1 + 1 х 2 ³ 20

(II) 50 х 1 + 200 х 2 ³ 2000

(III) 10 х 1 + 2 х 2 ³ 100 (2.2.2)

х 1 ³ 0, х 2 ³ 0,

F =1.5 х 1 + 2.5 х 2® min.

Геометрическую интерпретацию данной задачи приведем на рис.2.2.2.

х 2                            
50                            
A                            
(II)                            
40                            
35                            
30                            
F   n                        
20 B                          
(III)                            
10         (I)                  
5             C              

5 10 15 20 25 30 35 40 х 1

Рис.2.2.2. Графическое представление задачи 2.2.2

В данном случае множество допустимых планов представляет собой неограниченный многоугольник, заштрихованный на рис.2.2.2.

Целевая функция принимает наименьшее значение в точке В.

Визуально на графике координаты этой точки х 1 @ 7, х 2 @ 17.

Сделаем аналитическую проверку:

D=0.5´2 – 1´10 = –9,

D1 = 20´2 – 1´100 = –60,

D2 = 0.5 ´100 – 20 ´10 = –150.

Откуда х 1 = –60 / –9 = 6.67, х 2 = –150 / –9 = 16.67.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 751; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.