Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Устойчивость оптимального решения




Общая задача линейного программирования.

Мы рассмотрели сейчас предельно упрощенные примеры, преследуя исключительно иллюстративные цели, однако их анализ позволит осмыслить общие идеи и математические методы, лежащие в основе решения подобных задач.

В обоих примерах множество допустимых планов определяется точками выпуклого многогранника, полученного в результате пересечения полупространств, заданных линейными неравенствами (2.2.1) и (2.2.2). Линейная целевая функция при двух переменных задает на плоскости семейство параллельных прямых, при трех переменных – семейство параллельных плоскостей в трехмерном пространстве, а в случае n переменных – семейство параллельных (n- 1)–мерных пространств (гиперплоскостей) в n -мерном пространстве.

Линейные ограничения и линейная целевая функция появились в наших примерах благодаря предположению о пропорциональной зависимости переменных и постоянных факторов.

В силу этого подобный класс задач называют задачами линейного программирования.

Геометрически решение задачи линейного программирования сводится к следующим этапам:

а) определение области допустимых планов, т.е. построение соответствующего ограничениям многогранника;

б) перемещение гиперплоскости целевой функции в пространстве параллельно самой себе до тех пор, пока она не будет максимально (минимально) удалена от начала координат и при этом будет иметь хотя бы одну общую точку с многогранником допустимых планов.

Этой точкой, как мы видели, будет вершина многогранника, хотя может быть грань или ребро в случае параллельности гиперплоскости целевой функции какой-либо грани или ребру многогранника.

Координаты этой вершины и будут определять оптимальное решение. Если целевая гиперплоскость касается грани или ребра, то в этом случае получается множество оптимальных планов, имеющих одно и тоже максимальное (либо минимальное) значение целевой функции.

Из анализа решения примеров делаем важный вывод:

оптимальному плану соответствует точка в области допустимых планов (возможно неединственная), являющаяся вершиной многогранника допустимых планов. На этом основана идея метода решения задачи линейного программирования, заключающаяся в том, что для нахождения оптимального плана достаточно просматривать лишь вершины многогранника допустимых планов.

Решение (план), которому соответствует вершина многогранника, называется базисным. Для нахождения базисного плана необходимо решить систему из n линейных уравнений с n неизвестными.

Разработанный в 1949г. Дж. Данцигом симплекс-метод основан на последовательном переходе от одной вершины многогранника допустимых планов к соседней, в которой линейная целевая функция принимает лучшее (не худшее) значение до тех пор, пока не будет найдено оптимальное решение.

Рассмотренные выше примеры позволяют сформулировать общую задачу линейного программирования.

Дана система m линейных неравенств с n переменными

a 11 х 1 + a 12 х 2 + …+ a1n хn £ b 1

a 21 х 1 + a 22 х 2 + …+ a2n хn £ b 2

……………………………….. (2.2.3)

am 1 х 1 + a m2 х 2 + …+ amn хn £ b m

и линейная функция

F = c 1 х 1 + c 2 х 2 + … + cnхn. (2.2.4)

Необходимо найти такое решение системы Х = (х 1, х 2,…, хn), где

х j ³ 0 (j =1,2,…n), (2.2.5)

при котором линейная функция F (2.2.4) принимает оптимальное (максимальное или минимальное) значение.

Система (2.2.3) называется системой ограничений, а функция F – целевой функцией, критерием или функцией цели.

Более кратко общую задачу линейного программирования можно представить в виде:

F = à max(min)

при ограничениях:

£ bi (i =1,2,…, m),

xj ³ 0 (j =1,2,… n).

Оптимальным решением (или оптимальным планом) задачи линейного программирования называется решение системы ограничений (2.2.3), удовлетворяющее условию (2.2.5), при котором линейная функция (2.2.4) принимает оптимальное (максимальное или минимальное) значение.

В рассматриваемой задаче все неравенства вида “ £ “, хотя могут быть и вида “³“, каждое такое неравенство, как мы видели на примерах, определяет полупространство в n -мерном пространстве. Постоянные коэффициенты aij являются, как правило, нормами расхода i-го ресурса на производство единицы j- го изделия (продукта). Коэффициенты bi задают предельные объемы использования i -го ресурса. Коэффициенты cj определяют удельную прибыль (или затраты) от производства единицы j -го изделия (продукта).

Если мы какую-либо производственную задачу смоделировали в виде задачи линейного программирования, то в ходе ее решения можно получить следующие результаты:

1.Ограничения могут оказаться несовместными, и задача не имеет решения.

2. Целевая функция не ограничена в области допустимых планов, ее максимум (или минимум) ® + ¥ (- ¥).

3. Оптимальное решение единственное (целевая функция касается области допустимых планов в единственной вершине, ее координаты и определяют оптимальный план).

4. Существует некоторое множество оптимальных решений (планов).

Если задача экономически поставлена правильно, то 1-й и 2-ой случаи исключаются.

Рассмотрим теперь понятие устойчивости оптимального решения.

В первом примере (см. рис 2.2.1.) оптимальное решение находится в точке С, которая является пересечением двух прямых, заданных уравнениями

2 х 1 + 1 х 2 = 12, (I)

2 х 1 + 3 х 2 = 18. (II)

Целевая функция F =5 х 1 + 6 х 2 (здесь c 1=5, c 2=6) максимальное значение приняла в точке С. После составления плана и его реализации в конкретной производственной программе c 1 и c 2 (удельная прибыль или затраты) могут изменяться. Зададимся следующим вопросом:

при каком соотношении коэффициентов целевой функции c 1 и c 2 оптимальное решение сохранится (устоит) в точке С?

Из курса высшей математики (раздел аналитической геометрии) нам известно, что коэффициенты, стоящие перед переменными х 1 и х 2 в уравнении прямой суть координаты вектора, перпендикулярного данной прямой (т.н. нормаль). На рис.2.2.1 нормаль к целевой функции обозначена n, нормаль к ограничению (I) n 1 и нормаль к ограничению (II) n 2.

Чтобы оптимальное решение сохранялось в точке С при изменяющихся коэффициентах c 1 и c 2 необходимо, чтобы вектор нормали n лежал между векторами n 1 и n 2. Для этого необходимо, чтобы тангенс угла между вектором n и осью х 1 (обозначим через tg(n, х 1)) был больше tg(n 1, х 1), но меньше tg(n 2, х 1). Таким образом, для обеспечения устойчивости оптимального решения в точке С необходимо выполнение условия:

tg(n 1, х 1) £ tg(n, х 1) £ tg(n 2, х 1).

Так как tg(n, х 1) = с 2/ с 1,

tg(n 1, х 1) = а12 /а11 =1/2,

tg(n 2, х 1) = а22 /а21 =3/2,

окончательно получаем для примера 2.2.1 соотношение устойчивости оптимального решения в виде:

1/2 £ с 2/ с 1 £ 3/2.

В случае n переменных получаем много соотношений аналогичного вида между всеми с k и с j (k¹j) показывающих, при каких условиях изменение коэффициентов целевой функции не повлечет изменение оптимального решения.

Подставляя вместо c 1 и c 2 их значения получим проверочные соотношения

1/2 £ 6 /5 £ 3/2.

Для второй задачи соотношение устойчивости оптимального решения будет иметь вид:

2/10 £ с 2/ с 1 £ 1/0.5,

а проверочное соотношение

2/10 £ 2.5 /1.5 £ 1/0.5.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 2925; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.