КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 5. Определенный интеграл
Неберущиеся» интегралы. Это интегралы, которые не могут быть вычислены в элементарных функциях. Для таких интегралов приходится вводить специальные символы. Так получается потому, что класс интегралов от элементарных функций шире, чем класс элементарных функций (интегрирование – это переход от частного к общему – обобщение, а дифференцирование – это переход от общего к частному – уточнение). Примеры.
Задача о площади криволинейной трапеции.
Рассмотрим криволинейную трапецию, образованную отрезком стороны трапеции) и графиком функции
Устроим разбиение отрезка
Сумма Будем измельчать разбиение так, чтобы Если существуют пределы нижней и верхней сумм Дарбу при неограниченном измельчении разбиения, то они называются нижним Критерий существования определенного интеграла. Для того, чтобы существовал определенный интеграл по Риману Следствие. Если определенный интеграл существует как предел интегральных сумм, то он не зависит 2) от выбора разбиения, лишь бы 3) от выбора отмеченных точек 4) от способа измельчения разбиения, лишь бы Поэтому (критерий Римана) для интегрируемости по Риману ограниченной на отрезке функции необходимо и достаточно, чтобы существовало некоторое конкретное разбиение отрезка, на котором Теорема. Если функция непрерывна на отрезке, то она интегрируема на этом отрезке. Теорема. Если функция кусочно непрерывна на отрезке (имеет на нем не более конечного числа разрывов первого рода), то она интегрируема на этом отрезке.
Мы пришли к определенному интегралу от задачи о площади криволинейной трапеции. Если функция принимает на отрезке неотрицательные значения, то определенный интеграл можно интерпретировать как площадь под графиком функции. В этом состоит геометрический смысл определенного интеграла. К понятию интеграла можно придти и от других задач. Например, от задачи о работе переменной по величине силы, не меняющей направления на прямолинейном пути, от задачи о массе отрезка, плотность которого меняется от точки к точке, от задачи о пути тела, движущегося прямолинейно с переменной скоростью. Фактически, все эти задачи формально сводятся к задаче о площади криволинейной трапеции. В задаче о работе силы по оси ординат откладываются значения скалярного произведения вектора силы в данной точке x отрезка на орт оси OX. В задаче о массе отрезка по оси ординат откладываются значения переменной плотности. В задаче о пути, пройденном телом, по оси ординат откладывается величина скорости тела в данной точке. К схеме определенного интеграла сводится любая задача вычисления некоторой величины, аддитивно зависящей от множества, т.е. величины I, удовлетворяющей соотношению
Дата добавления: 2015-04-24; Просмотров: 505; Нарушение авторских прав?; Мы поможем в написании вашей работы! |