До сих пор при анализе сходимости несобственных интегралов мы предполагали, что подинтегральная функция принимает только положительные значения. Откажемся от этого предположения. Будем исследовать сходимость несобственных интегралов первого рода вида , где может принимать значения любого знака. Полученные результаты переносятся по аналогии на остальные несобственные интегралы первого и второго рода.
Интеграл называется абсолютно сходящимся, если сходится несобственный интеграл .
Теорема. Если интеграл абсолютно сходится, то он сходится.
Доказательство. Введем в рассмотрение две вспомогательные функции . Эти функции принимают только положительные значения. Кроме того, . По первому признаку сравнения из абсолютной сходимости интеграла , т.е. из сходимости интеграла следует сходимость интегралов , . Тогда сходится интеграл . Теорема доказана.
Пример. абсолютно сходится, так как а интеграл сходится.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление