Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 14. Дифференциальные уравнения высших порядков




Уравнения первого порядка, не разрешенные относительно производной.

Рассмотрим два типа уравнений 1) .

Метод введения параметра.

Обозначим

В случае 1) , .

Найдем решение , подставим в ,

получим - общее решение.

В случае 2)

Найдем решение , подставим в ,

получим - общее решение.

 

Уравнение Лагранжа.

Дифференцируем:

,

- линейное уравнение.

Отыскиваем и, подставляя в уравнение Лагранжа, находим .

Пример. - уравнение Лагранжа.

,

- линейное уравнение по .

Решаем его методом подстановки

.

 

Уравнение Клеро. .

Уравнение Лагранжа превращается в уравнение Клеро, если в уравнении Лагранжа положить .

Дифференцируем обе части:

.

1) - общее решение.

2) . Подставляя в уравнение, получим особое решение

 

Пример.

1. - общее решение

2. - особое решение.

 

 

Дифференциальное уравнение n – ого порядка в общем виде записывается так:

.

Дифференциальное уравнение n – ого порядка в виде, разрешенном относительно старшей производной, выглядит так:

.

Решением дифференциального уравнения n – ого порядка называется функция , обращающая его в тождество.

Общим решением дифференциального уравнения n – ого порядка называется функция такая, что

1. при любом наборе констант эта функция является решением,

2. для любого набора начальных условий из области существования решения найдется набор констант , при котором функция удовлетворяет заданным начальным условиям, т.е. .

Заметим, что общее решение дифференциального уравнения n – ого порядка зависит ровно от n констант.

Частным решением дифференциального уравнения n – ого порядка называется какое-либо из решений, входящих в общее решение (при конкретном выборе констант).

Общим интегралом дифференциального уравнения n – ого порядка называется функция , сохраняющая свои значения на решениях дифференциального уравнения.

Интегральной кривой называется график частного решения.

Общее решение представляет собой совокупность интегральных кривых.

 

Обычно рассматривается одна из трех задач:

1. Найти общее решение дифференциального уравнения n – ого порядка,

2. Задача Коши – найти частное решение дифференциального уравнения n – ого порядка, удовлетворяющее заданным начальным условиям,

3. Краевая задача – найти частное решение, удовлетворяющее заданным начальным условиям, одна часть которых задана в точке , а другая часть в точке .

Теорема Коши (существования и единственности решения задачи Коши для дифференциального уравнения n – ого порядка ).

Пусть функция и ее частные производные по переменным определены и непрерывны в некоторой области .

Тогда для любой внутренней точки существует единственное решение дифференциального уравнения, удовлетворяющее этим начальным условиям, т.е.

(через любую внутреннюю точку проходит единственная интегральная кривая).

 

Пример. Рассмотрим дифференциальное уравнение второго порядка . Область существования и единственности решения заполнена непересекающимися интегральными кривыми. Через любую точку проходит единственная интегральная кривая. Однако через «точку» проходит бесконечно много интегральных кривых, все они различаются значениями . Заметим, что в «точка» представляет собой прямую .

 

Понижение порядка дифференциальных уравнений.

 

Мы умеем аналитически решать всего пять типов дифференциальных уравнений первого порядка: с разделяющимися переменными, однородные, линейные, Бернулли, в полных дифференциалах. Причем однородные, линейные и Бернулли тоже сводятся к уравнениям с разделяющимися переменными.

Даже решить уравнение второго порядка, не говоря уж об уравнении n-го порядка – проблема. Поэтому стараются понизить порядок дифференциального уравнения, если это возможно, чтобы свести его к известным типам уравнений первого порядка.

Если правая часть дифференциального уравнения n-го порядка зависит только от x, то интегрируя его n раз, можно получить решение.

.

Но это – очевидный случай. Рассмотрим менее очевидные случаи.

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 569; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.