Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Упражнения. I. Найти производную функции по направлению в заданной точке




I. Найти производную функции по направлению в заданной точке .

1) , - биссектриса первого и третьего координатных углов, ;

2) , , , ;

3) , , ;

4) , , ;

5) , ; ;

6) , , , .

II. Найти вектор-градиент функции в заданной точке .

1) , ; 2) , ; 3) , .

III. В каком направлении производная по направлению функции в заданной точке имеет: а) наибольшее значение; б) наименьшее значение; в) равна 0.

1) , ; 2) , .

IV. Найти наибольшее значение производной по направлению функции в заданной точке .

1) , ; 2) , ;

3) , ; 4) , .

V. Показать, что функция , не дифференцируемая в точке , имеет в этой точке производную по любому направлению.

VI. Найти градиент функции в произвольной точке и убедиться, что он в этой точке перпендикулярен линии уровня.

VII. Найти угол между градиентами функции в точках и .

VIII. Найти производную функции в точке в направлении, перпендикулярном к линии уровня, проходящей через эту точку.

Тема 8. Функции одной и нескольких переменных, заданные неявно. Дифференцируемость векторных функций n переменных. Неявно заданные функции из IR.n в IRm

Будем говорить, что уравнение

(1)

задает неявно функцию на некотором промежутке , если при подстановке в уравнение (1) получаем тождество при всех .

Будем говорить, что уравнение

(2)

задает неявно функцию на некотором множестве R 2, если при подстановке в уравнение (2) получаем тождество при всех .

Теорема 1. Пусть выполнены условия:

1) функция и ее частные производные , непрерывны в некоторой окрестности точки ;

2) ;

3) .

Тогда уравнение (1) задает неявно в некоторой окрестности точки непрерывную функцию , удовлетворяющую условию , причем функция непрерывно дифференцируема в этой окрестности и

. (3)

Замечание 1. Производную неявно заданной уравнением (1) функции можно найти без использования формулы (3) следующим способом. При выполнении условий теоремы 1 в силу определения 1 выполняется тождество при всех . Дифференцируя его по , получим равенство

, (4)

из которого находим .

Замечание 2. Если выполняются условия теоремы 1 и функция имеет непрерывные частные производные второго порядка, то, дифференцируя соотношение (4) по , получим равенство

.

Отсюда находим вторую производную .

Замечание 3. Если , то при выполнении условий 1)-2) теоремы 1 уравнение (1) определяет неявно некоторую функцию . Если же обе частные производные и равны нулю, то точку называют особой точкой для геометрического образа уравнения (1).

Замечание 4. При выполнении условий теоремы 1 существуют касательная и нормаль к графику функции , заданной неявно уравнением (1), в точке , уравнения которых соответственно имеют вид

,

.

Теорема 2. Пусть выполнены условия:

1) функция и ее частные производные , , непрерывны в некоторой окрестности точки ;

2) ;

3) .

Тогда уравнение (2) задает неявно в некоторой окрестности точки непрерывную функцию , удовлетворяющую условию , причем функция непрерывно дифференцируема в этой окрестности и

, . (5)

Замечание 5. Для функции , заданной неявно уравнением (2), при выполнении условий теоремы 2 справедливы замечания, аналогичные замечаниям 1-3 к теореме 1, с соответствующими изменениями.

Замечание 6. При выполнении условий теоремы 2 существуют касательная плоскость и нормаль к графику функции , заданной неявно уравнением (2), в точке , уравнения которых соответственно имеют вид

, (6)
. (7)
     

Будем говорить, что система

(8)

задает неявно функции u = f (x; y), v = g (x, y) на некотором множестве D Ì R 2, если при подстановке u = f (x; y), v = g (x; y) в (7) при всех (x; y) Î D получаются тождества

(9)

Теорема 3. Пусть функции , определены и непрерывны вместе со своими частными производными в некоторой окрестности точки и выполняются условия:

1) координаты точки P 0 удовлетворяют системе (8);

2) якобиан

системы (8) в точке P 0 отличен от нуля, т.е. .

Тогда в некоторой окрестности точки M 0(x 0; y 0) система (8) определяет неявно функции u = f (x; y), v = g (x; y) такие, что , , причем

а) эти функции непрерывны в окрестности точки M 0;

б) они имеют в этой окрестности частные производные.

Частные производные функций f и g, например, по переменной x могут быть найдены путем дифференцирования тождеств системы (9) по этой переменной. В результате получаем систему

линейную относительно неизвестных и . Определителем этой системы является якобиан , который в точке P 0 отличен от нуля в силу условия 2) теоремы 3. Следовательно, система имеет единственное решение в окрестности этой точки. Решая ее, находим неизвестные частные производные и . Частные производные функций f и g по переменной y находят аналогично тому, как это делалось при нахождении частных производных и .

Пример 1. Определить задает ли уравнение неявно непрерывную функцию в окрестности точки при условии . Выяснить имеет ли эта функция производную в окрестности этой точки и если да, то вычислить её.

Решение. Обозначим через . Проверим выполнимость условий теоремы 1. Функция и ее частные производные , определены и непрерывны в окрестности точки (1; 0). Так как , а , то все условия теоремы 1 выполнены. Следовательно, данное уравнение задает в окрестности точки непрерывную и дифференцируемую функцию . Производная этой функции в окрестности точки , согласно формуле (3), определяется равенством

. (10)

В самой точке имеем .

Заметим, что для нахождения производной функции можно было воспользоваться способом, указанным в замечании 1. Продифференцируем уравнение , полагая . В результате получим соотношение

.

Выражая из него , получим равенство (10).

Пример 2. Найти частные производные и дифференциал неявно заданной уравнением функции в точке (1; 2; 1), если они существуют. Составить уравнения касательной плоскости и нормали к поверхности в этой точке.

Решение. Обозначим через . Частные производные этой функции

; ;

непрерывны в R 3, как многочлены. Так как точка (1; 2; 1) удовлетворяет условиям теоремы 2, то уравнение задает неявно в некоторой окрестности точки (1; 2) непрерывно дифференцируемую функцию , которая, согласно формулам (5), имеет в этой окрестности частные производные

; ,

причем , .

Функция дифференцируема в окрестности точки (1; 2)и ее дифференциал

.

Так как в точке (1; 2; 1) выполнены все условия теоремы 2, то в этой точке существуют касательная плоскость и нормаль к поверхности , причем, в силу формул (6), (7), эти уравнения соответственно имеют вид

и .

Пример 3. Найти в точке (1; 1; 2; -2) частные производные функций , , заданных неявно системой

. (11)

Решение. Координаты точки P0 удовлетворяют данной системе. Обозначим через , . Найдем значение якобиана этих функций в точке P 0.

; .

Так как все условия теоремы 3 выполняются, то в некоторой окрестности точки M 0(1; 1) система (11) определяет неявно функции u = f (x; y), v = g (x; y), которые имеют в этой окрестности частные производные.

Найдем частные производные по переменной x. Для этого продифференцируем систему (11) по x, считая u = u (x; y), v = v (x; y). В результате получим систему

из которой находим

; .

Тогда , . Поступая аналогично тому, как это было сделано выше, находим , .




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1288; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.