КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сложение взаимно перпендикулярных колебаний
Сначала рассмотрим случай, когда частоты складываемых колебаний одинаковы. Пусть координаты х и у частицы изменяются по закону (23) Можно показать, что траекторией частицы при этом является эллипс (рис.10), вид которого определяется отношением амплитуд a и b и разностью фаз d.
Рис.10
Некоторые частные случаи: а) d = 0, тогда y = (b / a) x, т.е. частица движется по прямой в первом и третьем квадрантах (рис.11, а); б) d = p, тогда y = — (b / a) x и частица движется тоже по прямой, но во втором и четвертом квадрантах (рис.11, б); в) d = p/2. В этом случае x 2/ a 2 + y 2/ b 2 = 1, т.е. частица движется по эллипсу, полуоси которого а и b совпадают с осями координат. При а = b эллипс превращается в окружность. Так как колебания вдоль оси У происходят с опережением по фазе на p/2 относительно колебаний по оси Х, то сначала у и лишь затем х достигают максимальных значений. Это значит, что движение частицы будет происходить по часовой стрелке (рис.11, в); г) d = 3p/2. Это то же, что и d = —p/2, поскольку изменение фазы на 2p несущественно (рис.11, г).
Рис.11
Если частоты взаимно перпендикулярных колебаний не одинаковы и относятся как целые числа, то траектории результирующего движения имеют более сложные формы. Их называют фигурами Лиссажу. Одна из этих фигур показана на рис.12, она соответствует отношению частот
Рис.12
И последнее: при сложении взаимно перпендикулярных колебаний полная энергия , (24) т.е. складывается изэнергий каждого колебания (в отличие от сложения колебаний одного направления(. Согласно (13), эта энергия . (25)
Дата добавления: 2015-04-24; Просмотров: 476; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |