КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Физический маятник
Это твердое тело, совершающее колебания вокруг неподвижной оси, жестко связанной с телом. Рассмотрим колебания под действием силы тяжести (рис.4). Выберем положительное направление отсчета угла против часовой стрелки (ось Z направлена к нам). Тогда проекция момента силы тяжести на ось Z запишется, как и уравнение динамики вращательного движения твердого тела примет вид , где I — момент инерции тела относительно оси О, l — расстояние между осью О и центром масс С. Ограничимся рассмотрением малых колебаний, при которых sin » . При этом условии предыдущее уравнение можно записать так: . Рис.4
Колебания будут гармоническими с частотой w0 и периодом Т, равными . (10) Такую же частоту и период имеет математический маятник длины , (11) которую называют приведенной длиной физического маятника. Точку (рис.4), которая находится на прямой, проходящей через точку подвеса О и центр масс С, и отстоит от точки О на расстоянии l пр, называют центром качания физического маятника. Центр качания обладает замечательным свойством: если маятник перевернуть и заставить совершать малые колебания вокруг оси , то период колебаний не изменится. На этом свойстве основано определение ускорения свободного падения с помощью оборотного маятника: экспериментально устанавливают положения двух «сопряженных» точек (осей) О и , малые колебания вокруг которых происходят с одинаковой частотой. Это значит, что расстояние О = l пр. Определив w0 и l пр, из формулы находим g.
Общие выводы
Рассмотренные примеры относятся к свободным колебаниям без трения, которые происходят в системе, предоставленной самой себе после того, как она была выведена из состояния равновесия. Можно утверждать, что свободные колебания любого осциллятора в отсутствие трения будут гармоническими, если действующая в нем сила (или момент силы) является квазиупругой, т.е. силой, направленной к положению равновесия и зависящей от смещения из этого положения линейно. Именно квазиупругий характер силы (или момента силы) служит и критерием малых колебаний. Кроме того, частота и период свободных колебаний без трения зависят только от свойств самого осциллятора в отличие от амплитуды колебаний и начальной фазы, которые определяются начальными условиями.
Дата добавления: 2015-04-24; Просмотров: 1268; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |