Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Грузик на пружине




Динамика гармонических колебаний

 

Для определения характера движения механической системы нужно, исходя из законов динамики или закона сохранения энергии, составить уравнение движения системы, и если оно приводится к виду (5), то можно однозначно утверждать, что данная система является гармоническим осциллятором, частота w0 которого равна корню квадратному из коэффициента при х. Рассмотрим несколько примеров и затем обобщим полученные результаты.

 

 

Пусть грузик массы m, подвешенный на невесомой пружине жесткости , совершает вертикальные колебания (рис.2). Возьмем начало О оси Х в положении равновесия, где , - растяжение пружины в этом положении. Тогда, согласно основному уравнению динамики, , или

.

 

Рис.2

 

Из сопоставления с (5) видим, что это уравнение гармонического осциллятора, колеблющегося около положения равновесия с частотой w0 и периодом Т, равными

, (8)

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 815; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.