Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Формирователи и генераторы импульсов




В цифровых устройствах на микросхемах большую роль играют различные формирователи импульсов - от кнопок и переключателей, из сигналов с пологими фронтами, дифференцирующие цепи, а также мультивибраторы.В данном разделе книги рассмотрены некоторые вопросы построения таких формирователей и генераторов на микросхемах серий КМОП.

Как известно, непосредственная подача сигналов от механических контактов на входы интегральных микросхем допустима не всегда изза так называемого «дребезга» - многократного неконтролируемого замыкания и размыкания контактов в момент их переключения. Если входы, на которые подается сигнал, нечувствительны к дребезгу, например входы установки триггеров и счетчиков, непосредственная подача сигналов допустима (рис. 282).Подача сигналов на счетные входы требует специальных мер по подавлению дребезга, без них возможно многократное срабатывание триггеров и счетчиков.


В устройствах на микросхемах КМОП вполне применимы меры по борьбе с дребезгом, известные из опыта работы с микросхемами ТТЛ, например, включение статического триггера на двух элементах И-НЕ (рис. 283, а, б) или ИЛИ-НЕ. Однако чрезвычайно высокое входное сопротивление микросхем КМОП (по-

рядка сотен и тысяч мегаом) и относительно высокое выходное сопротивление (сотни ом - один килоом) позволяет упростить цепи подавления дребезга, исключив резисторы (рис. 283, в, г). Вариантом схемы рис.283 (г) является устройство по схеме рис.283 (д), собранное всего лишь на одном неинвертирующем логическом элементе.

Здесь следует сказать несколько слов о неинвертирующих логических элементах серий КМОП.Большинство логических элементов этих серий являются инвертирующими. Неинвертирующими являются микросхемы К176ПУЗ, К561ПУ4, КР1561ПУ4, К176ПУ5,564ПУ6, К561ПУ8, К561ЛНЗ, К176ЛП2, К561ЛП2, К561ЛП13, К561ЛП14, К176ЛС1, К176ЛС2, К176ЛИ1, КР1561ЛИ2, К561ИК1. Как указывалось выше, микросхемы, содержащие в своем обозначении буквы «ПУ», служат для согласования микросхем КМОП с микросхемами ТТЛ.По этой причине их выходные токи при подаче на их выходы напряжения питания или соединении выходов с общим проводом в устройстве по схемам рис. 283 (в, г, д) могут достигать многих десятков миллиампер,


что отрицательно сказывается на надежности устройств и может служить мощным источником помех. В мультивибраторах и триггерах Шмитта, описываемых ниже, также невыгодно применять такие микросхемы из-за больших токов, потребляемых ими в процессе плавного изменения входного сигнала.По тем же причинам не рекомендуется в описываемых здесь устройствах использовать инвертирующие микросхемы К176ПУ1, К176ПУ2, К561ЛН1, К561ЛН2.

Поэтому в дальнейшем под неинвертирующим логическим элементом подразумевается или два последовательно включенных любых инвертирующих элемента (кроме отмеченных выше), или микросхема КР1561ЛИ1, или микросхемы К176ЛП2, К561ЛП2, К561ЛП13, К561ЛП14, К176ЛС1, К561ЛС2, К561ИК1.включенные как неин-

вертирующие элементы. О возможности их использования в качестве неинвертирующих указано в предыдущей главе книги.Иногда удобно в качестве.неинвертирующего элемента использовать свободный триггер микросхемы К176ТМ2 или К561ТМ2 (рис. 284).

Микросхему К176ЛИ1 также можно использовать как неинвертирующий элемент рассматриваемых далее устройств, однако


это не очень удобно, так как в одной микросхеме содержится всего один девятивходовый неинвертирующий элемент И и один инвертор.

Большое входное сопротивление микросхем КМОП позволяет в некоторых случаях обойтись вообще без активных элементов для подавления дребезга.На рис.285 (а) приведена схема подачи импульсов от кнопки на счетный вход триггера или счетчика.Конденсатор С1 в исходном состоянии заряжен до напряжения питания.При нажатии на кнопку размыкание нормально замкнутого контакта не приведет к изменению напряжения на конденсаторе С1.Первое касание подвижного и нормально разомкнутого контакта приведет к быстрому разря-ду конденсатора С1 и напряжение на нем станет равным нулю.Дальнейший дребезг контактов не приведет к изменению напряжения на конденсаторе.Недостатком схемы является опасность наводок помех на проводник, соединяющий кнопку и вход микросхемы.Если наводки действительно возникают, этот проводник следует заэкранировать.


Все рассмотренные выше схемы подавления дребезга требовали применения переключающих контактов кнопок.Если выполнение этого требования затруднено, возможно использование устройств по схемам рис.285 (б, в).Цепь на схеме рис. 285 (б) формирует короткий импульс отрицательной полярности (порядка 0,7 мкс на уровне 0,5) в момент первого касания контактов кнопки, в результате чего конденсатор С1 быстро заряжается через резистор R2. Дальнейший дребезг контактов кнопки не влияет на выходное напряжение, так как разряд конденсатора С1 происходит через резистор R1 значительно большей величины.

Если необходимо получить длительность выходного импульса, равную длительности нажатия на кнопку с одной парой контактов, можно использовать подавление дребезга с помощью интегрирующей цепи и триггера Шмитта (рис. 285, в). Дребезг импульса на резисторе

R1 сглаживается цепью R2C1.Триггер Шмитта DD1 формирует крутые фронты выходного сигнала.

Для подавления дребезга контактов кнопки с одной парой контактов можно использовать цепь, три варианта схемы которой приведены на рис. 286. Цепь по схеме рис. 286 (а) По функционированию близка интегрирующей цепи и триггеру Шмитта рис.285 (в).В исходном состоянии на входе и выходе цепи лог. 1. При замыкании кнопки S1 на левой обкладке конденсатора С1 напряжение начинает снижаться и, если постоянная времени R2C1 выбрана достаточно большой, достигает порога переключения элемента DD1.1 после прекращения дребезга Элементы DD1.1 и DD1.2 переключаются, на выходе появляется лог. 0 Положительная обратная связь обеспечивает крутые фронты сигнала на выходе элемента DD1.2.При размыкании контактов переключение происходит аналогично.В результате на выходе цепи формируется импульс, длительность которого соответствует времени замыкания контактов, а фронт и спад импульса несколько задержаны относительно моментов замыкания и размыкания контактов (рис. 286, б).


Если необходимо получить фронты выходного сигнала точно в моменты размыкания или замыкания кнопки, можно использовать варианты цепи по схемам рис.286 (в, д).Первая из них (рис. 286, в) при замыкании кнопки формирует на выходе лог.О аналогично цепи рис.286 (а).При размыкании кнопки лог.1 поступает на нижний по схеме вход элемента DD1.1, оба элемента DD1.1 и DD1.2 переключаются, лог.1 с выхода элемента DD1.2 через конденсатор С1 поступает на вход элемента DD1.1 и удерживает его во включенном состоянии на время дребезга контактов кнопки S1 (рис. 286, г).

Аналогично работает цепь по схеме рис. 286 (д), однако ее включе-


ние происходит при первом замыкании контактов кнопки S1, выключение - после окончания дребезга разомкнувшейся кнопки (рис. 286, е).

Переключатели с взаимовыключением можно построить на основе многостабильного триггера.Вариант схемы переключателя на три положения приведен на рис. 287. При включении питания лог. 0 с разряженного конденсатора С1 через диод VD1 поступает на входы элементов DD1.1 и DD1.2 и выключает их.Наих выходах появляются лог.1, которые, поступая через резисторы R1 и R2 на входы элемента DD1.3, включают его, и лог.0 с его выхода удерживает элементы DD1.1 и DD1.2 в выключенном состоянии и после заряда конденсатора С1 через резистор R4.Таким образом, в исходном состоянии на выходах 1 и 2 лог.1, на выходе 3 - лог. 0.

При нажатии на кнопку SB1 на выходах 2 и 3 появляется лог.1, на выходе 1 - лог. 0. Аналогично при нажатии на кнопку SB2 лог. 0 появляется на выходе 2, на кнопку SB3 - на выходе 3.Переключение выходных сигналов происходит без дребезга.

При одновременном нажатии двух или трех кнопок на всех трех входах появляется лог.1, что соответствует отсутствию активных выходных сигналов.При отпускании кнопок лог.0 появится на выходе, соответствующем последней нажатой кнопке.Однако снятие и появление выходных сигналов при нажатии нескольких кнопок происходит без подавления дребезга.

Недостаток такого переключателя - необходимость применения логических элементов с большим числом входов для построения переключателей на большое число положений. Для переключателя на

четыре положения необходимо четыре трехвходовых элемента И-НЕ (ИЛИ-НЕ), для переключателя на пять положений – пять

Для преобразования напряжения из синусоидального или другой формы с плавными фронтами в прямоугольные импульсы с хорошей формой используются триггеры Шмитта (рис. 290). Для этой схемы

эффективное значение входного напряжения синусоидальной формы должно составлять от 0,25 до 0,5 напряжения питания.

Описанные в первом разделе триггеры микросхем К561ТЛ1 и КР1561ТЛ1, а также триггер на основе микросхемы К176ЛП1 имеют неизменяемые пороги переключения. При необходимости использования триггеров Шмитта с другими порогами можно строить их, охватывая обратной связью неинвертирующий

логический элемент и подавая входной сигнал через резистор (рис. 291). Пороги включения Uвкл и выключения Uвыкл такого триггера можно найти по формулам:

Uвкл= (1 + R1/R2)Uпор

Uвыкл=Uпор-(Uпит-Uпор)R1/R2 где Uпор - пороговое напряжение логическо



го элемента. Обычно пороговое напряжение логических элементов близко к половине напряжения питания, поэтому пороги включения и выключения можно вычислить по формулам:

Uвкл = (1 + R1/R2)Uпит/2;

Uвыкл=(1-R1/R2)Uпит/2.

Ширина петли гистерезиса Uг (разность порогов включения и выключения) не зависит от Uпор и равна:

Uг=UпитR1/R2.

Для формирования коротких импульсов из перепадов на выходах микросхем применяют дифференцирующие цепи.На рис.292 (а) показана дифференцирующая цепь для получения импульса по фронту входного импульса положительной полярности, на рис.292 (б) - по спаду.Диоды VD1 и VD2 являются защитными и входят в состав микросхем серий К561, КР1561,564 и серии К176 выпуска последних лет. Как указывалось в первом разделе, в микросхемах серии К176 старых выпусков установлен только один диод - стабилитрон VD2 с напряжением включения порядка 30 В.

Резистор R2 служит для ограничения входного тока через конденсатор СГи входные диоды VD1 и VD2. Нагружая микросхему - источник сигнала, этот ток увеличивает длительность фронта на выходе микросхемы - источника, а ток более 20 мА, текущий через защитные


диоды, может привести к порче микросхем, подключенных ко входу и выходу дифференцирующей цепочки, особенно при питании устройства от источника питания с напряжением более 9 В. Сопротивление резистора R2 выбирают порядка 3...10 кОм, если напряжение питания менее 9 В и увеличение нагрузки на микросхему - источник сигнала не является принципиальным, этот резистор не ставят.


Эффективная длительность импульсов на выходе дифференцирующей цепочки 0,7R1C1, длительность спада - 2R1C1.

В радиолюбительских конструкциях для формирования коротких импульсов из перепадов можно встретить так называемую RCD-цепь, схема одного из вариантов которой приведена на рис.293, иногда она используется без диода.Такая цепь по результату своей работы эквивалентна простейшей дифференцирующей цепочке, но сложнее ее, не имеет никаких преимуществ и поэтому не может быть рекомендована к применению.

В этом отношении интересна цепь по схеме рис.294, формирующая короткие выходные импульсы по фронту и спаду входного. Длительность импульсов на выходе формировате-

лей по схемам рис. 293 и 294 такая же, как и для дифференцирующей цепочки, - 0.7R1C1.

Импульсы с фронтами или спадами длительностью более 10 мкс, поступая на входы микросхем КМОП, могут вызывать их генерацию, неустойчивую работу триггеров и счетчиков, поэтому при необходи-мости получения импульсов с длительностью более 10 мкс после диф(ференицуюшей цепочки целесообразно установить триггер Шмитта.

 

 




Поделиться с друзьями:


Дата добавления: 2015-03-29; Просмотров: 2128; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.039 сек.