КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Предельный цикл.В фазовом пространстве такому типу поведения соответствует притягивающее множество (аттрактор), называемое предельным циклом
Предельный цикл есть изолированная замкнутая кривая на фазовой плоскости, к которой в пределе при t ® ¥ стремятся все интегральные кривые. Предельный цикл представляет стационарный режим с определенной амплитудой, не зависящий от начальных условий, а определяющийся только организацией системы. Существование предельного цикла на фазовой плоскости есть основной признак автоколебательной системы. Очевидно, что при автоколебательном процессе фаза колебаний может быть любой. Остановимся на общих характеристиках автоколебательных систем. Рассмотрим систему уравнений общего вида:
(8.1) Если T (T > 0) — наименьшее число, для которого при всяком t
то изменение переменных x = x(t), y = y(t) называется периодическим изменением с периодом T. Периодическому изменению соответствует замкнутая траектория на фазовой плоскости, и обратно: всякой замкнутой траектории соответствует бесконечное множество периодических изменений, отличающихся друг от друга выбором начала отсчета времени. Если периодическому изменению на фазовой плоскости соответствуетизолированная замкнутая кривая, к которой с внешней и внутренней стороны приближаются (при возрастании t) соседние траектории по спиралям, эта изолированная замкнутая траектория есть предельный цикл. Простые примеры позволяют убедиться, что система общего вида (8.1) допускает в качестве траекторий предельные циклы. Например, для системы
(8.2) траектория является предельным циклом. Его параметрические уравнения будут:
а уравнения всех других фазовых траекторий запишутся в виде:
. Значениям постоянной интегрирования С > 0 соответствуют фазовые траектории, накручивающиеся на предельный цикл изнутри (при t ®¥), а значениям –1< C <0 траектории, накручивающиеся снаружи. Предельный цикл называетсяустойчивым, если существует такая область на фазовой плоскости, содержащая этот предельныйцикл, - окрестность e, что все фазовые траектории, начинающиеся в окрестности e, асимптотически при t ® ¥ приближаются кпредельному циклу. Если же, наоборот, в любой сколь угодно малой окрестности e предельного цикла существует по крайней мере одна фазовая траектория, не приближающаяся к предельному циклупри t ® ¥, то такой предельный цикл называется неустойчивым. Такие циклы разделяют области влияния (бассейны) разных притягивающих множеств.
На рис. 8.2 изображены устойчивый предельный цикл (а) и неустойчивые (б) и (в).
Неустойчивые предельные циклы, подобные изображенному на рис. 8.2 б, такие, что все траектории с одной стороны (например, изнутри) приближаются к ним, а с другой стороны (например, извне) удаляются от них при t ® ¥, называют «полуустойчивыми» или двойными. Последнее название связано с тем, что обычно такие циклы при подходящем изменении параметра системы расщепляются на два, один из которых устойчив, а другой неустойчив. А.М. Ляпунов показал, что для исследования устойчивости периодического движения x = j(t), y = y(t) можно идти по пути линеаризации уравнений, подобно тому, как мы это делали при исследовании устойчивости состояний равновесия. Если положить
подставить эти выражения в уравнения (8.1), разложить правые части этих уравнений - функции
в ряды по степеням x и h и отбросить нелинейные члены, то мы получим линейные уравнения (уравнения первого приближения) для координат возмущения x и h:
Коэффициенты в правой части:
Это система линейных дифференциальных уравнений с периодическими коэффициентами периода T, поскольку a, b, c, d суть функции от j, y — периодических функций времени с периодом T. Общий вид ее решения
Здесь — некоторые периодические функции с периодом T. От показателей и которые носят название «характеристических показателей», зависят свойства решений для отклонений от стационарного периодического решения x и h. А именно, знаки их действительных частей определяют, являются ли эти решения нарастающими или затухающими. Можно показать, что в силу автономности исходной системы (8.1) один из характеристических показателей равен нулю, а другой равен h.
где x = j(t), y = y(t) — любое периодическое решение, соответствующее рассматриваемому предельному циклу, T — период решения. Таким образом, устойчивость предельного цикла (и устойчивость в смысле Ляпунова соответствующих периодических движений) определяется знаком характеристического показателя. Предельный цикл устойчив, если h < 0 и неустойчив, если h > 0. Если же h = 0, уравнения первого приближения не решают вопроса об устойчивости периодического движения. Для нахождения предельных циклов не существует таких простых аналитических методов, как для нахождения стационарных точек и исследования их устойчивости. Однако, исследование фазовой плоскости системы позволяет ответить на вопрос, есть в данной системе предельный цикл, или нет. Сформулируем несколько теорем, определяющих наличие предельного цикла по топологическому строению фазовой плоскости. Они могут быть полезны как при аналитическом, так и при компьютерном анализе системы. Теорема 1. Пусть на фазовой плоскости существует область, из которой фазовые траектории не выходят, и в которой нет положений равновесия (особых точек). Тогда в этой области обязательно существует предельный цикл, причем все остальные траектории обязательно наматываются на него. На рис. 8.3. изображена такая область G, из которой фазовые траектории не выходят. Это означает, что фазовые траектории либо входят, пересекая границу, внутрь области, либо сама граница является траекторией. Легко видеть, что такая область не может быть односвязной. Поскольку траектория наматывается на предельный цикл изнутри, это означает, что внутри этого предельного цикла на фазовой плоскости существует либо неустойчивая особая точка, либо неустойчивый предельный цикл, очевидно, не принадлежащие рассматриваемой области G. Таким образом, если найти на фазовой плоскости такую двусвязную область, что направления фазовых траекторий на всей границе обращены внутрь этой области, то можно утверждать, что внутри этой области имеется предельный цикл. Теорема 2. Если существует на фазовой плоскости некоторая замкнутая область, такая, что все фазовые траектории, пересекающие границу этой области, входят в нее, и внутри этой области находится неустойчивая особая точка, то в этой области обязательно имеется хотя бы один предельный цикл (рис. 8.4)
Приведем также некоторые критерии отсутствия замкнутых фазовых траекторий (в том числе предельных циклов). 1. Если в системе не существует особых точек, то в ней не может быть и замкнутых фазовых траекторий. 2. Если в системе существует только одна особая точка, отличная от узла, фокуса и центра (например, седло), то такая система не допускает замкнутых фазовых траекторий. 3. Если в системе имеются только простые особые точки, причем через все точки типа узел и фокус проходят интегральные кривые, уходящие на бесконечность, то в такой системе нет замкнутых фазовых траекторий. В случае, если критерии 1–3 выполнены, можно с уверенностью утверждать, что в системе нет предельных циклов. Однако невыполнение этих критериев еще не позволяет сделать вывод о наличии в системе предельных циклов и, следовательно, автоколебаний.
Неустойчивый предельный цикл также может содержаться в фазовом портрете грубых систем. Однако такой предельный цикл не соответствует реальному периодическому процессу, он играет лишь роль «водораздела», по обе стороны которого траектории имеют различное поведение. Например, на рис. 8.5 представляет собой сепаратрису, отделяющую область тяготения траекторий к устойчивой особой точке, с одной стороны, и к устойчивому предельному циклу, с другой.
Дата добавления: 2015-04-25; Просмотров: 2116; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |