Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Введение. Bases to theories of management




ОСНОВЫ ТЕОРИИ УПРАВЛЕНИЯ

Copyright ©2008-2009 Davydov А.V.

Bases to theories of management.

Тема 1. ВВЕДЕНИЕ В ТЕОРИЮ УПРАВЛЕНИЯ

Золотая узда не сделает клячу рысаком.

Луций Анней Сенека. Римский писатель, философ-стоик. I в.н.э.

Отсюда следует, что никакая самая совершенная система управления не способна на чудеса. Купите рысака, лекарство для клячи обойдется дороже.

Владислав Микшевич. Уральский геофизик, ХХ в.

Содержание

Введение.

1. Предисловие к теории управления. Процессы и сигналы. Информационное содержание сигнала. Кибернетический блок. Кибернетическая система.

2. Основные понятия теории управления. Управление и системы управления. Основные задачи теории управления. Активные и пассивные системы. Субъекты и объекты управления. Операция управления. Методы управления. Управляющие параметры.

3. Классификация систем управления. Принципы управления. Методы классификации систем. Классификация по топологии функциональной схемы. Тип и характер управления. Классификация систем по свойствам в установившемся режиме. Управляющие воздействия. Классификация по характеру работы функциональных узлов. Классификация по типам управления. Классификация по алгоритмам функционирования.

4. Организационно-экономические системы управления. Производственно-экономические и организационные системы. Виды организаций. Структуры организаций. Структура управления. Адаптивные организационные структуры. Функционирование управленческих структур. Управленческая ответственность. Схемы управления. Социометрические исследования.

Теория управления – это наука, разрабатывающая и изучающая методы и средства систем управления. Особенностью современного этапа научно-технического прогресса является то,
то объектами автоматизации становятся
не только процессы материального производства, но и сферы
деятельности человека: организационно-адми-
нистративное управление, распределение ресурсов и принятие решений, проектирование и
конструирование, информационное обслуживание, здраво-
охранение, научные исследо-
вания, образование, и многие другие.

Теория управления как самостоятельное научное направление сложилась в ХХ веке на базе теории автоматического регулирования, которая начала интенсивно развиваться со второй половины 19 века в связи с потребностью в регуляторах - специальных устройствах, поддерживающих устойчивый режим работы повсеместно внедрявшихся паровых машин самого различного назначения в промышленности и на транспорте. Теория автоматического управления (ТАУ) - наука об управлении, изучающая задачи анализа и синтеза систем автоматического управления (САУ), как одного из классов кибернетических систем. Развитие ТАУ, в основном для промышленных направлений, показало, что результаты и выводы данной теории могут быть применимы к управлению объектами различной природы с различными принципами действия. В настоящее время в рамках теории управления разрабатываются и изучаются принципы построения и функционирования систем управления во всех сферах человеческой деятельности, методы и средства создания систем управления и закономерности протекающих в них процессах.

Современная теория управления занимает одно из ведущих мест в технических науках и в то же время относится к одной из отраслей прикладной математики. С другой стороны, теория и практика автоматического управления связаны с вычислительной техникой. Теория управления на базе математических моделей позволяет изучать динамические процессы в автоматических системах, устанавливать структуру и параметры составных частей системы для придания реальному процессу управления желаемых свойств и заданного качества. Она является фундаментом для специальных дисциплин, решающих проблемы автоматизации управления и контроля технологических процессов, проектирования следящих систем и регуляторов, автоматического мониторинга производства и окружающей среды, создания автоматов и робототехнических систем.

Основными задачами теории управления являются задачи анализа динамических свойств автоматических систем на модельном или физическом уровне, и задачи синтеза алгоритма управления, функциональной структуры автоматической системы, реализующей этот алгоритм, ее параметров и характеристик, удовлетворяющих требованиям качества и точности, а также задачи автоматического проектирования систем управления, создание и испытания реальных автоматических систем.

Предметом настоящего краткого курса являются основы теории управления материальными объектами и технологическими процессами, принципы организации, функционирования и проектирования технических и информационных систем управления в материальном производстве. Методы и средства систем управления в сфере деятельности человека приводятся только на уровне понятий для общей ориентировки.

1.1. ПРЕДИСЛОВИЕ К ТЕОРИИ УПРАВЛЕНИЯ [1].

Процессы и сигналы. Динамическим процессом, или движением, называют развитие во времени некоторого физического явления (движение механизма, тепловое явление, экономический процессы). Процессы порождают информационные потоки - вторичные процессы, несущие информацию о рассматриваемом физическом явлении, которые называется сигналами.

Сигналы, как и порождающие их процессы, существуют вне зависимости от наличия измерителей или присутствия наблюдателя. При рассмотрении сигнала принято различать его информационное содержание (о первичном процессе) и физическую природу вторичного процесса (носителя). В зависимости от физической природы носителя выделяют акустические, оптические, электрические, электромагнитные, и пр. сигналы. Природа физического носителя может не совпадать с природой первичного процесса. Так например, слиток металла может разогреваться электромагнитным излучением, а температура слитка регистрироваться по инфракрасному излучению.

В теории управления сигнал рассматривается с кибернетических позиций и отождествляется с количественной информацией об изменении физических переменных изучаемого процесса безотносительно к физической природе как первичного процесса, так и носителя сигнала. При этом учитывается, что реальный сигнал может не содержать всей информации о развитии физического явления, равно как и содержать постороннюю информацию. На информационное содержание сигналов оказывают влияние способы их кодирования, шумы и эффекты квантования.

В зависимости от способа кодирования различают аналоговые и цифровые сигналы. Для аналоговых сигналов интенсивность физического носителя пропорциональна изучаемой физической переменной. В цифровых сигналах информация представлена в виде чисел (например, в форме двоичных кодов). Вопрос адекватности информация рассматриваемой физической переменной связан с понятиями идеального и реального сигнала.

Идеальный сигнал тождественен некоторой физической переменной x(t), в то время как реальный сигнал x'(t) содержит шумы измерения или помехи d(t) (постороннюю информацию о канале связи, внешней среде или измерителе) и обычно отображается в виде:

x'(t) = x(t) + d(t).

С понятием реального сигнала связаны задачи идентификации (оценивания) динамических процессов x(t) по текущим измерениям x'(t) и вопросы фильтрации (наблюдения), сглаживания и прогнозирования.

Информационное содержание сигнала зависит и от эффектов квантования. По характеру изменения во времени процессы и сигналы подразделяются на непрерывные и дискретные. К последним, в свою очередь, относятся процессы, квантованные по уровню, и процессы, квантованные по времени.

Рис. 1.1.1.

Развитие процесса непрерывного времени характеризуется переменной x(t), принимающей произвольные значения из числовой области X и определенной в любые моменты времени t > to (рис. 1.1.1-а, где tо=0). К непрерывным процессам относятся непрерывное механическое движение, электрические и тепловые процессы, и т.п.

Развитие дискретного квантованного по уровню процесса характеризуется переменной x(t], принимающей строго фиксированные значения и определенной в любые моменты времени (рис. 1.1.1-б). В практических случаях можно полагать xi = iD, i = 0, 1, 2,..., где D - приращение, или дискрета. В тех случаях, когда число состояний i достаточно велико или приращение D мало, квантованием по уровню пренебрегают.

Развитие дискретного квантованного по времени процесса (процесса дискретного времени) характеризуется переменной x(t), принимающей произвольные значения и определенной в фиксированные моменты времени ti, где i = 0, 1, 2,... (рис. 1.1.2-а). Как правило, квантование осуществляется с постоянным интервалом квантования Т, т. е. t = iТ, i = 0, 1, 2,...

Рис. 1.1.2.

К дискретным процессам такого рода относятся процессы в цифровых вычислительных устройствах с тактовой частотой процессора f=1/Т, процессы в цифровых системах управления, где дискретность по времени обусловлена циклическим характером обработки информации (Т - время обновления информации в выходном регистре управляющей ЭВМ). При достаточно малых интервалах Т дискретностью по времени пренебрегают, и квантованный по времени процесс относят к процессам непрерывного времени.

К дискретным обычно относят также кусочно-постоянные процессы и сигналы, которые характеризуются переменной x(t), скачкообразно изменяющейся в фиксированные моменты времени ti (рис. 1.1.2-б).

Кибернетический блок - это блок, для которого установлены связанные причинно-следственным отношением входные и выходные сигналы. Выходной сигнал блока x1(t) несет информацию о внутреннем процессе, причиной которого является входной сигнал x2(t). Использование блока не требует знания его «устройства» и физической природы происходящих в нем процессов ("черный ящик").

В зависимости от числа входных и выходных сигналов различают одноканальные блоки (один вход, один выход), и многоканальные с несколькими входными и выходными сигналами. Блоки, у которых отсутствуют входные сигналы, называются автономными. По типу сигналов различают непрерывные, дискретные и дискретно-непрерывные блоки.

Для описания кибернетического блока используется одна из форм аналитического описания связи входных и выходных сигналов - дифференциальные и разностные уравнения, автоматные алгоритмы и проч., т. е. выражения вида

x1(t) = F(x2(t)), (1.1.1)

где F(*) - функциональный оператор. Для простейших блоков такое описание может быть получено в виде алгебраического или трансцендентного уравнения:

x1 = f(x2), (1.1.2)

где f(*) - функция.

Рис. 1.1.3.

Пример. Имеем электронагревательную печь, температура в которой to регулируется нагревателем (рис. 1.1.3-а). Входным сигналом этого блока является напряжение нагревателя x2(t) = U(t), а выходным - температура x1(t) = to(t). Связь выхода и входа описывается функциональным оператором (дифференциальным уравнением):

T dx1(t)/dt + x1(t) = x2(t),

где Т - постоянная времени, К - коэффициент передачи. Если напряжение нагревателя постоянно, т. е. х2 = U = const, и x1(0) = 0, то выходная переменная находится как (рис. 1.1.3)

x1(t) = K(1-exp(-t/T))x2(t).

В установившемся режиме, после окончания переходных процессов в печи (при t →∞), связь выходного и входного сигналов описывается простейшим алгебраическим уравнением вида (1.1.2), т. е.: x1 = Kx2.

Аналогичные выражения для описания связей входных и выходных переменных получаются для электрической RC-цепи (рис. 1.1.3- б). Здесь x1(t} = Uвых(t) - выходное напряжение схемы, x2(t) = Uвх(t) — входное напряжение, Т = RC и К = 1.

С понятием кибернетического блока связаны следующие задачи:

идентификация - нахождение выражения (1.1.1), связывающего сигналы x2(t) и x1(t);

управление - определение входного сигнала x2(t), обеспечивающего получение заданного выходного сигнала x1(t) в предположении, что описание блока задано.

Кибернетическая система - это упорядоченная совокупность кибернетических блоков, связанных между собой информационными каналами. Связи между блоками носят сигнальный (информационный) характер.

Для описания системы необходимо получить аналитические зависимости, описывающие каждый из блоков в отдельности, и связи между ними. После преобразований может быть получено общее (эквивалентное) описание системы как составного кибернетического блока с входным сигналом и выходным сигналом. В зависимости от числа входных и выходных сигналов различают одноканальные системы (с одним входом и одним выходом) и многоканальные системы с несколькими входными и выходными сигналами.

По типу сигналов и блоков в системе различают непрерывные, дискретные и дискретно-непрерывные системы, причем последние содержат как непрерывные, так и дискретные блоки.

Для кибернетической системы можно определить следующие задачи:

• анализ системы, т. е. определение связи между ее входом и выходом в виде алгебраического или дифференциального уравнения, а также нахождение показателей качества системы (быстродействия, точности и т. д.);

• управление, или синтез системы, т. е. нахождение блоков и связей между ними, обеспечивающих получение заданной связи входных и выходных сигналов либо заданных показателей качества.

Наиболее распространенным типом дискретно-непрерывных систем являются цифровые системы, в состав которых входят цифровые вычислительные устройства - ЭВМ и цифровые контроллеры.




Поделиться с друзьями:


Дата добавления: 2015-04-29; Просмотров: 403; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.