Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Фактора j




Матрица Р: доля случаев, когда фактор i предпочтительнее

Помощью парного сравнения

Матрица предпочтений для ранжирования с

 

Фактор А B C D Ранг
А          
В          
С          
D          

 

В некоторых случаях сначала производится предварительное ранжирование факторов, а затем, с помощью метода парных сравнений, — уточнение их предпочтительности. В конце этого параграфа дан числовой пример такой процедуры. Поскольку обычно в процедуре парного сравнения участвуют несколько экспертов, то сначала каждый из них заполняет матрицу А, а затем полученные индивидуальные предпочтения усредняются с учетом мнений всех экспертов.

На основе этого строится вторая матрица (Р), показывающая процентное отношение случаев, когда фактор i оказывался более значимым, нежели фактору, в общем числе полученных оценок (табл. 7.9).

Элементы матрицы Р обладают тем свойством, что рij = хij /т, где т — число экспертов; кроме того, рij + рji = 1.

Таблица 7.9.

Фактор i Фактор j Сумма ряда
      j ... n
… i … n — p21   pi1   pn1 p12 —   pi2   pn2   p1j p2j   pij   pnj   p1n p2n   pin   — p1 p2   pi   pn

 

После получения обобщенной матрицы предпочтений Р, элементы которой рij представляют относительное число предпочтений, полученных от всех экспертов, по каждому фактору перед каждым другим фактором, производится их шкалирование. Шкалирование может быть основано на законе сравнительных суждений, впервые сформулированном Л. Терстоуном. Суть этого подхода состоит в следующем.

Если парное сравнение факторов выполняется относительно большим числом экспертов ³ 25), то полученные разности между их оценками обладают нормальным распределением.

Пусть т экспертов приписывают п признакам Ri (i1, i2,..., in) числа Sj (j1 j2,…, jn), в соответствии со степенью обладания ими каким-то качеством X. Тогда числа Sj представляют собой шкальные оценки Ri, а разность между такими оценками двух объектов Ri и Rj (если оценки не коррелируют между собой) можно выразить с помощью модели шкалы

 

Si - Sj = Zijsij, (7.9)

 

где Si, Sj — шкальные оценки факторов;

sij — среднее квадратическое (стандартное) отклонение предполагаемого распределения различий между Si и Sj,

Zij нормированное отклонение, соответствующее рij, представляющему долю случаев предпочтения фактора i фактору j, т.е.

Взаимоотношение между Z ij и рij иллюстрирует рис. 7.3, где заштрихованная площадь под кривой показывает относительное число предпочтений фактора i фактору j, когда Z ij измеряется в единицах стандартного отклонения.

 

 

Для упрощения можно принять, что s ij в формуле (7.9)равно единице, тогда

Si – Sj = Z ij

 

При этом допускается, что площадь под кривой нормированного нормального распределения от - 3s до +3s равна единице.

В действительности реальные оценки отличаются от ожидаемого ряда Z ij. Поэтому задача заключается в нахождении множества оценок, для которых это расхождение будет минимальным.

Таким образом, процедура построения шкальных оценок состоит в том, чтобы обратить наблюдаемые отношения рij (матрица Р) в ожидаемые Z ij по уравнению (7.11), используя таблицу нормированного нормального распределения. Эти Z ij составляют матрицу с двумя входами или матрицу основного преобразования Z, с рядами цифр для каждого фактора i и столбцами цифр для каждого фактора j, как это показано в табл. 7.10.

В матрице Z каждая оценка z ij — это различие между параметром i и параметром j в стандартных отклонениях, причем сумма этих оценок Zi = Szi, а среднее значение ,, где т — число экспертов.

 

Таблица 7.10.

Матрица Z: основное преобразование (различия)

Фактор i Фактор j Всего Среднее значение
        j ... n    
… i … n — z21 z31   zi1   zn1 z12 — z32   zi2   zn2 z13 z23 —   zi2   zn3   z1j z2j z3j   zij   znj   z1n z2n z3n   zin   — Z1 Z2 Z3   Zi   Zn 123i   Z̅n

 

При этом рij рассматривается как площадь нормированного нормального распределения от - ¥ до Z Значения функции такого распределения приведены во многих книгах по статистике.

Заметим, что z ij логически равно нулю и что z ij = - z ij. Если любое z ij оказывается большим, чем +2,0, или же меньшим, чем —2,0, оно отвергается как нестабильное. Если ни одна из оценок z ij не будет отвергнута на основании этого правила, то шкальная оценка фактора i будет равна средней величине всех оценок в i-м столбце данной матрицы. Когда некоторое z ij отвергается, то в таблице ставится прочерк. Для каждой пары последовательных столбцов данных необходимо рассчитать разность оценок и поместить ее в отдельную матрицу различий. При этом разница между двумя прочерками или между значением и прочерком считается несущественной, и в матрице различий ставится прочерк. Таким образом, произвольно установив S1 = 0, можно определить остальные шкальные оценки.

Очевидно, что метод парных сравнений является интервальным, поскольку не только шкальный фактор, но и нулевая точка шкалы устанавливаются здесь произвольно.

При большом числе факторов может быть использован другой интервальный метод, называемый методом последовательных интервалов. Здесь принимается, что границы интервалов могут быть установлены так, чтобы все распределения суждений о факторе были нормальными (см. [7.1]).

Представим, что интервалы проранжированы в порядке от наименее до наиболее предпочтительного. Пусть pjg относительное число экспертов, которые поместили фактор j в интервале g или в любом другом интервале меньшего рангового порядка. Пусть Zjg будет нормированным нормальным отклонением, соответствующим pjg. Тогда

 

,

где t - граница между интервалами g и g + 1;

Sj шкальная оценка фактора j;

sj стандартное отклонение фактора j.

Принимая sj = 1, получим

(7.13)

 

На рис. 7.4 показано распределение двух признаков с различным стандартным отклонением.

 

 

Для получения шкальных оценок S и границ интервалов tg, эксперты должны расположить т факторов в М интервалах (М < т).

Тогда относительное число экспертов, которые поместили фактор j в интервале g или в любом другом интервале меньшего ранга, pjg = я,.. /N.

Затем по таблице нормированного нормального распределения в соответствии с формулой (7.12) для каждого pjg определяется Zjg.

Для получения шкальных оценок и границ интервалов можно использовать и метод обращения полученных из наблюдений величин pjg в Z.g, применяемый при парном сравнении.

Приняв ti = 0, вычисляют с помощью подобных таблиц границы интервалов, а затем конструируется четвертая матрица, значения оценок которой находятся путем вычитания каждой записи g-ro ряда матрицы Zig из полученной оценки tg. Средняя величина ряда в этой матрице — это шкальная оценка соответствующего признака.

 

 




Поделиться с друзьями:


Дата добавления: 2015-04-29; Просмотров: 429; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.024 сек.