Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Матрица попарных сравнений для уровня 3




Матрица попарных сравнений для уровня 2

Шкала относительной важности

 

Интенсивность относительной важности Определение Объяснение
  Равная важность Равный вклад двух видов деятельности в цель
  Умеренное превосходство одного над другим Опыт и суждения дают легкое превосходство одного вида деятельности над другим
  Существенное или сильное превосходство Опыт и суждения дают сильное превосходство одного вида деятелы юсти над другим
  Значительное превосходство Очевидное превосходство одного вида деятельности над другим подтверждается наиболее сильно
2, 4, 6, 8 Промежуточное решение между двумя соседними суждениями Применяются в компромиссном случае
Обратные величины приведенных выше чисел Если при сравнении одного вида деятельности с другим получено одно из вышеуказанных чисел (например, 3), то при сравнении второго вида деятельности с первым получим обратную величину (т.е. 1/3)  

 

Относительная важность любого элемента, сравниваемого с самим собой, равна 1; поэтому диагональ матрицы (элементы от левого верхнего угла до нижнего правого) содержит только единицы.

Если w 1, w 2, w 3,..., w п неизвестны заранее, то попарные сравнения элементов производятся с использованием субъективных суждений, численно оцениваемых по шкале (табл. 7.16), а затем решается проблема нахождения компонента.

Когда проблемы представлены иерархически, матрица составляется для сравнения относительной важности критериев на втором уровне, по отношению к общей цели на первом уровне. Подобные матрицы должны быть построены для парных сравнений каждой альтернативы на третьем уровне, по отношению к факторам (критериям) второго уровня.

Матрицы попарных сравнений для уровня 2 и 3 показаны в табл. 7.17 и табл. 7.18 (ограничимся четырьмя элементами).

Таблица 7.17.

 

  A1 A2 A3 A4
A1        
A2        
A3        
A4        

Таблица 7.18.

 

A1 К L М A2 К L М
K       К      
L       L      
М       М      
А3 K L М A4 K L М
К       K      
L       L      
М       М      

 

При сравнении элементов К и L задают вопросы:

какой из них важнее или имеет большее воздействие?

какой из них более вероятен?

какой из них предпочтительнее?

Отметим, что клетки этих матриц не заполнены, они оставлены для оценок или суждений об относительной важности сравниваемых отдельных предметов, по отношению к цели, или критерию (фактору). Если существует шкала сравнений, т.е. имеется некоторый способ измерения, то данные могут использоваться для проведения сравнений, иначе клетки заполняются оценками, полученными в результате субъективных, но продуманных суждений индивидуума или группы, решающей проблему.

 

Синтез приоритетов

 

Из группы матриц парных сравнений формируется набор локальных приоритетов, которые выражают относительное влияние множества элементов на элемент примыкающего сверху уровня.

Порядок формирования локальных приоритетов следующий.

Вычисляем собственные вектора:

Таким образом, компонента собственно вектора первой строки равна

компонента собственного вектора третьей строки равна

После того как компоненты собственного вектора получены для всех п строк, их возможно использовать для дальнейших вычислений:

 

Когда матрица имеет такой вид, получается, что в действительности х1, х2, х3 и x4 есть не что иное, как w 1, w 2, w 3,..., w п соответственно. Из отношений wi/wj определим каждую компоненту w. Важно отметить, что в матрице суждений нет отношений в виде wi/wj, а имеются только целые числа или их обратные величины из шкалы.

 

Синтез глобальных приоритетов

 

Приоритеты синтезируются, начиная со второго уровня вниз. Порядок синтеза состоит в следующем. Локальные приоритеты перемножаются на приоритеты соответствующего фактора (критерия) на вышестоящем уровне и суммируются по каждому элементу в соответствии с факторами (критериями), на которые воздействует этот элемент.

Глобальные приоритеты позволяют путем сравнения принять решение.

Для выполнения условий согласованности в матрицах попарных сравнений используются обратные величины aij = 1 ij вместо традиционно используемых при построении интервальных шкал величин aij = - аij.

Индекс согласованности (ИС) может быть получен следующим образом. Сначала суммируется каждый столбец суждений, затем сумма первого столбца умножается на величину первой компоненты нормализованного вектора приоритетов, сумма второго столбца умножается на величину первой компоненты нормализованного вектора приоритетов, сумма второго столбца — на вторую компоненту и т.д. Затем полученные числа суммируются. Таким образом можно получить величину, обозначаемую lmax. Для индекса согласованности имеем:

ИС = (lmax - n)/(n - 1),

где п — число сравниваемых элементов.

Для обратносимметричной матрицы всегда l тах ³ п. В табл. 7.19 даны средние согласованности для матриц разного порядка.

Таблица 7.19.




Поделиться с друзьями:


Дата добавления: 2015-04-29; Просмотров: 1244; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.