КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Подбор теоретического закона распределения СВ об отказах
Статическая оценка законов распределения отказов ВЛ и оборудования ЭС. Для решения теоретических и практических задач надёжности производственных ЭС и их элементов надо знать законы распределения их отказов. Они получаются посредством обобщения статического материала об отказах. Примем случайную величину (СВ) “Т” за время безотказной работы. За время эксплуатации восстанавливаемых элементов ЭС – «t» величина “Т” принимает “n” значений. Совокупность этих случайных значений величины – статическая выборка объёма “n”. Если значения СВ “Т” расположить в возрастающем (убывающем) порядке и указать относительно каждого как часто оно встречается, то имеем распределение СВ или вариационный ряд на основании которого определяем аналитическую форму неизвестной плотности вероятности f(t) = φ(t) или функцию распределения F(t). Для построения вариационного ряда диапазон значений СВ “T” разбиваем на интервалы. Подсчитываем количество значений «m» СВ Т, приходящейся на каждый интервал и определяем частоту её попадания в данный интервал:
(4.77) где n – число наблюдений, объём выборки. Вариационный (статический) ряд
Таблица 4.3
Оптимальная величина интервала:
(4.78) где n – число единиц в совокупности (выборке); (tmax - tmin) – размах вариации СВТ.
Число интервалов:
(4.79) или проще: (4.80) Большое значение имеет графический метод изображения вариационного ряда: § Полигон распределения (многоугольник): по оси абсцисс откладываем интервалы значений СВ, в их серединах строим ординаты, пропорциональные частотам и концы ординат соединяем. § Гистограмма распределения. Над каждым отрезком оси абсцисс, изображающем интервал значений СВ, строится прямоугольник, высота которого пропорциональна частотам интервала. При уменьшении длинны каждого интервала гистограмма приближается к некоторой плавной кривой, соответствующей плотности распределения величины “T”. Таким образом при построении гистограммы получаем представление о дифференциальном законе распределения СВ Т. § Статическая функция распределения F*(t) – частота событий Т< t в данной выборке:
F*(t) = p*(T<t) (4.81)
где t – текущая переменная; p* - частота или статическая вероятность события.
F*(ti) = ni/n (4.82)
где ni – число отказов, при которых Т < t; n – число наблюдений. Если Т – непрерывная величина, то при увеличении “n” (объёма выборки) F*(t) – интегральная функция распределения величины Т. Таким образом, построение статической функции распределения F*(t) решает вопрос об установлении на основе экспериментальных данных закона распределения СВ.
Пользование F*(t) неудобно таким образом экспериментальные точки гистограммы колеблются около неизвестной кривой истинного распределения. Для выяснения теоретического закона распределения СВ заданного F(t) или f(t) = φ(t) производится обработка статических данных. Выбирается апроксимирующая функция f(t) = φ(t), которая согласуется с данными эксперимента f0(t) = f(t). Для оценки правдоподобия этого приближённого вероятностного равенства разработано несколько критериев согласия проверяемых гипотез относительно вида функции (апроксимирующей и данных эксперимента) f0(t) и f(t). Порядок применения критерия согласия:
Дата добавления: 2015-04-30; Просмотров: 566; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |