Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Функции случайных величин




Функция с.в. будет также случайной величиной Y=j(X). Ее распределение соответствует распределению аргумента, но с измененной шкалой абсцисс. P(y)=Prob(Y<y)=Prob(j(X)<y).

(36.3)=(17.3),

где y(y) - функция обратная j(х) (замена подинтегрального выражения x=y(y), dx=y¢(y)dy).

Если Y=j(X), где j(X) - монотонная функция своего аргумента, то распределение Y определяется тем, что вероятность нахождения y в пределах y1<Y<y2 равна вероятности неравенства х1<X<x2,

где y1=j(x1) и y2=j(x2).

М.о. и дисперсия с.в. Y:

(37.3)=(20.3) и (22.3).

Доказательство (37.3):

Для линейной функции Y=aX+b из (37.3) и (18.3) следует

и D(Y)=a2D(X) (38.3).

Доказательство (38): .

Для функции Z=j(X,Y) двух случайных аргументов м.о. и дисперсия (39.3).

Если Z=j(X,Y)=X+Y и X и Y - независимы, то м.о. и дисперсия суммы независимых с.в. величин D(Z)=D(X)+D(Y).

Плотность распределения непрерывной с.в. Y, связанной монотонной функциональной зависимостью Y=j(X) с непрерывной с.в. Х:

или (40.3),

где x=y(y) - функция обратная y=j(x).

Для линейной функции y=ax+b из (40) следует

p(y)=(1/a)p(x) (40¢.3).

Если Y=j(X/R) и p(x/r) - условная плотность вероятности с.в. Х, входящей в систему (X,R), то условная плотность вероятности с.в. Y - ,

где y(y/r) - функция обратная Y=j(X/R), а безусловная плотность вероятности с.в. Y:

,

где p(r) - плотность вероятности с.в. R.

Если имеются функции с.в. U=U(X,Y) и V=V(X,Y), то, зная совместную плотность распределения p(x,y), совместная плотность распределения U и V:

(41.3)

(в скобках - Якобиан ).

Матожидания: (42.3),

дисперсия ,

корреляционный момент .

В случае линейного преобразования U=a1X+b1Y+c1 и V=a2X+b2Y+c2 по (41.3) и (42.3) имеем:

(43.3),

и (44.3).

Дисперсия

Доказательство (44)

Запишем еще раз дисперсии и корреляционные моменты:

, , (доказать самостоятельно).

Зная плотность распределения p(U,V), где U=U(X,Y) и V=V(X,Y), можно определить плотность распределения p(U) или p(V): .

Пример (стр.23 [7]). Стержень нагружен изгибающим моментом M b и крутящим моментом M t, и есть их совместная плотность вероятности pq(Mb,Mt). Кроме того, моменты Mb и Mt стохастически независимы и подчиняются центрированному нормальному распределению:

,

где s b и s t – стандарты M b и M t.

Опасное состояние стержня достигается при превышении некоторой функцией этих моментов предельного значения M r> M r,lim, зависящего от свойств материала и геометрии сечения стержня. Например, для стержня круглого сечения из пластического материала эта функция может быть взята в виде , где M r – приведенный момент, определенный в соответствии с критерием текучести, основанном на наибольших касательных напряжениях.

Касательное напряжение от крутящего момента , где I r - полярный момент круглого сечения, y – радиус окружности, содержащей рассматриваемую точку, t = t max при y=r (r – радиус стержня). Нормальное напряжение от изгибающего момента . Для расчета надежности стержня необходимо знать плотность вероятности p u(M r) приведенного момента M r.

Перейдем к полярным координатам, положив , где 0£q£2p. Согласно (41.3) совместная плотность распределения с. в. Mr и q:

.

Используя и замечая, что якобиан преобразования ,

найдем

Плотность распределения вероятности pu(Mr) определяется интегрированием полученной формулы по углу q: . Используя формулу анализа , где - функция Бесселя мнимого аргумента нулевого порядка, получим окончательно .

Если дисперсии моментов M b и M t одинаковы, т.е. s b= s t= s, то I 0(0)=1 и . При этом приведенный момент подчиняется распределению Рэлея.

 




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 297; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.