КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Кристалл CdS 12 страница
19.11. КРАТКИЕ СВЕДЕНИЯ О РАЗЛИЧНЫХ ТИПАХ ТЕТРОДОВ И ПЕНТОДОВ Выпущено несколько типов тетродов в качестве приемно-усилительных ламп. Ряд тетродов применяется в качестве мощных модуляторных ламп для импульсной работы и мощных генераторных ламп; лучевые тетроды — для выходных каскадов усилителей низкой частоты, а также дЛя генераторов и передатчиков. Пентоды — наиболее распространенные лампы. Приемно-усилительные пентоды делятся на маломощные — для работы на высоких и низких частотах и более мощные — для работы на низких частотах. Последние также используют в генераторах и передатчиках. Большую группу составляют специальные генераторные пентоды. Пентоды старых типов имели вывод управляющей сетки наверху баллона, а вывод анода — на цоколе. Значительно удобнее современные пентоды, в которых все электроды выведены на цоколь. При этом анод и управляющая сетка, как правило, присоединены к диаметрально противоположным штырькам. В конструкции электродов предусмотрены экраны для уменьшения емкости анод — управляющая сетка. Внутри цоколя и в ключе имеется металлический экран. Для пальчиковых ламп экран находится в центральном отверстии ламповой панели. Такие экраны резко снижают проходную емкость. Широко используются различные пентоды малой мощности, например сверхминиатюрные, а также пальчиковые. Низкочастотные пентоды для выходных каскадов усилителей отличаются тем, что все их электроды выведены на цоколь без особой экранировки, так как небольшая проходная емкость на низких частотах не влияет на работу лампы.
19.12. СПЕЦИАЛЬНЫЕ ЛАМПЫ Для преобразования частоты и других целей широко применялись и еще встречаются в аппаратуре специальные лампы с двойным управлением, Называемые частотопреобразователъными и имеющие две управляющие сетки. Наиболее распространены были гептоды, т. е. семиэлектродные лампы с пятью сетками. Триодцая часть гептода, состоящая из катода и первых двух сеток, используется в гетеродине, в котором генерируются колебания вспомогательной частоты. Вторая сетка работает как анод триода и как экранирующая сетка, разделяющая гетеродинную и сигнальную части лампы. Третья сетка выполняет роль второй управляющей и называется сигнальной. На нее подаются колебания с частотой сигнала. Четвертая и пятая сетки — обычные экранирующая и защитная, как в пентоде. В некоторых схемах в гетеродине применялась отдельная лампа, а гептод использовался как смеситель, т. е. в нем происходит сложение («смешение») колебаний гетеродина и сигнала. Однако гептоды плохо работают на волнах короче 20 м. Помимо гептодов применялись шести-электродные лампы — гексоды, которые отличаются от гептодов отсутствием защитной сетки. Существовали также восьмиэлектродные октоды, в которых вторая сетка работала как анод триода, а третья сетка была экранирующей. В РЭА широко использовались различные комбинированные лампы, имеющие в одном баллоне две, а иногда три или четыре системы электродов. Применение этих ламп уменьшало габариты аппаратуры и упрощало монтаж. На схематических изображениях таких ламп для упрощения иногда показывали один подогреватель и один катод. В подобных лампах, особенно для высоких частот, ставили экраны, устраняющие емкостную связь между системами электродов. В приемниках, радиоизмерительных приборах и магнитофонах встречается электронно-световой индикатор (иначе электронно-лучевой, или электронно-оптический, индикатор настройки), который позволяет осуществлять бесшумную настройку приемника при установке регулятора громкости на нуль, а также выполняет роль индикатора напряжения в магнитофонах и измерительных устройствах. Он состоит из усилительного триода и триодной индикаторной системы, в которой роль анода выполняет электрод, люминесцирующий под ударами электронов. Индикатор работает так, что под действием приходящих сигналов на люминесцирующем электроде увеличивается или уменьшается темный сектор. Для увеличения крутизны усилительных ламп помимо сокращения расстояния сетка — катод (см. гл. 13) использовались и другие методы. В лампах с катодной сеткой, имевших крутизну до 25 мА/В, между управляющей сеткой и катодом была дополнительная сетка, имевшая положительный потенциал. Она способствовала созданию потенциального барьера вблизи управляющей сетки. Тогда эта сетка сильнее действовала на барьер. Недостатком таких % ламп был большой и бесполезный ток катодной сетки. Лампы с вторичной эмиссией имели дополнительный электрод — вторично-эмиссионный катод, или динод, на который подавался положительный потенциал меньший, чем на анод. Поток первичных электронов ударял в динод и создавал в несколько раз больший поток вторичных электронов, летящих к аноду. Крутизна возрастала до сотен миллиампер на вольт. Оригинальными явились разработанные В. Н. Авдеевым лампы, в которых вместо сеток применялись стержневые электроды. У этих ламп ниже мощность накала, расход энергии анодного источника, межэлектродные емкости и ток экранирующей сетки, а также выше механическая прочность, устойчивость и надежность. Их недостатком была сравнительно малая крутизна. Значительный интерес представляют сверхминиатюрные приемно-усилитель-ные металлокерамические триоды и тетроды, называемые нувисторами. Они обладают высокой надежностью и экономичностью. Их производство автоматизировано, что обеспечило высокое качество и малый разброс параметров. Нувисторы обладают высокой механической прочностью, устойчивостью к ударам и вибрациям и могут работать при" температуре до 200 °С. Некоторые нувисторы имеют цилиндрические выводы, предназначенные для соединения с коаксиальными колебательными контурами, и могут работать на частотах до 2000 МГц.
ГЛАВА ДВАДЦАТАЯ ЭЛЕКТРОННО-ЛУЧЕВЫЕ ТРУБКИ 20.1. ОБЩИЕ СВЕДЕНИЯ В электронно-лучевых приборах создается тонкий пучок электронов (луч), который управляется электрическим или магнитным полем либо обоими полями. К этим приборам относятся электроннолучевые трубки индикаторных устройств радиолокаторов, для осциллографии, приема телевизионных изображений (кинескопы), передачи телевизионных изображений, а также запоминающие трубки, электронно-лучевые переключатели, электронные микроскопы, электронные преобразователи изображений и др. Большинство электронно-лучевых приборов служит для получения видимых изображений на люминесцентном экране; иХ называют электронно-графическими. В этой главе рассматриваются наиболее распространенные осциллографи-ческие и приемные телевизионные трубки, к которым также близки индикаторные трубки радиолокационных и гидроакустических станций. Трубки могут быть с фокусировкой электронного луча электрическим или магнитным полем и с электрическим или магнитным отклонением луча. В зависимости от цвета изображения на люминесцентном экране бывают трубки с зеленым, оранжевым или желто-оранжевым свечением — для визуального наблюдения, синим — для фотографирования осциллограмм, белым или трехцветным — для приема телевизионных изображений. Кроме того, трубки изготовляются с различной длительностью свечения экрана после прекращения ударов электронов (так называемым послесвечением). Трубки различаются также по размерам экрана, материалу баллона (стеклянные или металлостеклянные) и другим признакам. 20.2. ЭЛЕКТРОСТАТИЧЕСКИЕ ЭЛЕКТРОННО-ЛУЧЕВЫЕ ТРУБКИ Электронно-лучевые трубки (ЭЛТ) с электростатическим управлением, т. е. с фокусировкой и отклонением луча электрическим полем, называемые для краткости электростатическими трубками, особенно широко применяют в осциллографах. На рис. 20.1 показаны принцип устройства электростатической трубки простейшего типа и ее изображение на схемах. Баллон трубки имеет цилиндрическую форму с расширением в виде конуса или в виде цилиндра большего диаметра. На внутреннюю поверхность основания расширенной части нанесен люминесцентный экран ЛЭ — слой веществ, способных излучать свет под ударами электронов. Внутри трубки расположены электроды, имеющие выводы, как правило, на штырьки цоколя (для упрощения на рисунке выводы проходят непосредственно через стекло баллона).
Катод К обычно бывает оксидный косвенного накала в виде цилиндра с подогревателем. Вывод катода иногда совмещен с одним выводом подогревателя. Оксидный слой нанесен на донышко катода. Вокруг катода располагается управляющий электрод, называемый модулятором (М), цилиндрической формы с отверстием в донышке. Этот электрод служит для управления плотностью электронного потока и для предварительной фокусировки его. На модулятор подается отрицательное - напряжение (обычно десятки вольт). С увеличением этого напряжения все больше электронов возвращается на катод. При некотором отрицательном напряжении модулятора трубка запирается. Следующие электроды, также цилиндрической формы, являются анодами. В простейшем случае их два. На втором аноде А2 напряжение бывает от 500 В до нескольких киловольт (иногда 10 — 20 кВ), а на первом аноде Ах напряжение в несколько раз меньше. Внутри анодов^ перегородки с отверстиями (диафрагмы). Под действием ускоряющего поля анодов электроны приобретают значительную скорость. Окончательная фокусировка электронного потока осуществляется с помощью неоднородного электрического поля в пространстве- между анодами, а также благодаря диафрагмам. Более сложные фокусирующие системы содержат большее число цилиндров. Система, состоящая из катода, модулятора и анодов, называется электронным прожектором (электронной пушкой) и служит для создания электронного луча, т. е. тонкого потока электронов, летящих с большой скоростью от второго анода к люминесцентному экрану. На пути электронного луча поставлены под прямым углом друг к другу две пары отклоняющих пластцн Пх и Пг Напряжение, подведенное к ним, создает электрическое поле, отклоняющее электронный луч в сторону положительно заряженной пластины. Поле пластин является для электронов поперечным. В таком поле электроны движутся по параболическим траекториям, а, выйдя из него, далее движутся по инерции прямолинейно, т. е. электронный луч получает угловое отклонение. Чем больше напряжение на пластинах, тем сильнее отклоняется луч и тем больше смещается на люминесцентном экране светящееся, так называемое электронное пятно, возникающее от ударов электронов. Пластины Пу отклоняют луч по вертикали и называются пластинами вертикального отклонения (пластинами «игрек»), а пластины Пх — пластинами горизонтального отклонения (пластинами «икс»). Одна пластина каждой пары иногда соединяется с корпусом аппаратуры (шасси), т. е. имеет нулевой по тенциал. Такое включение пластин называется несимметричным. Для того чтобы между вторым анодом и корпусом не создавалось электрическое поле, влияют щее на полет электронов, второй анод обычно также бывает соединен с корпусом. Тогда при отсутствии напряжения на отклоняющих пластинах между ними и вторым анодом не будет никакого поля, действующего на электронный луч. Поскольку второй анод соединен с корпусом, то катод, имеющий высокий отрицательный потенциал, равный напряжению второго анода, должен быть хорошо изолирован от корпуса. При включенном питании прикосновение к проводам катода, модулятора и цепи накала опасно. Так как на электронный луч могут влиять посторонние электрические и магнитные поля, то трубку часто помещают в экранирующий чехол из мягкой стали. Свечение люминесцентного экрана объясняется возбуждением атомов вещества экрана. Электроны, ударяя в экран, передают свою энергию атомам экрана, в которых один из электронов переходит на более удаленную от ядра орбиту. При возвращении электрона обратно, на свою орбиту, выделяется квант лучистой энергии (фотон) и наблюдается свечение. Это явление называется катоЬ о люминесценцией, а вещества, светящиеся под ударами электронов, называются като-долюминофорами или просто люминофорами. Электроны, попадающие на экран, могут зарядить его отрицательно и создать тормозящее поле, уменьшающее их скорость. От этого уменьшится яркость свечения экрана и может вообще прекратиться попадание электронов на экран. Поэтому необходимо снимать отрицательный заряд с экрана. Для этого на внутреннюю поверхность баллона наносится проводящий слой. Он обычно бывает графитовым и называется аква-дагом. Аквадаг соединяется со вторым анодом. Вторичные электроны, выбиваемые из экрана ударами первичных электронов, летят к проводящему слою. После ухода вторичных электронов потенциал экрана обычно близок к потенциалу проводящего слоя. В некоторых трубках имеется вывод от проводящего слоя (ПС на рисунке), который можно использовать в качестве дополнительного анода с более высоким напряжением. При этом электроны дополнительно ускоряются после отклонения в системе отклоняющих пластин (так называемое послеускорение). Проводящий слой исключает также образование на стенках баллона отрицательных зарядов от попадающих туда электронов. Эти заряды могут создавать дополнительные поля, нарушающие нормальную работу трубки. Если в трубке проводящего слоя нет, то вторичные электроны уходят с экрана на отклоняющие пластины и второй анод. Все электроды трубки обычно монтируют с помощью металлических держателей и изоляторов на стеклянной ножке трубки. Цепи питания. Цепи питания электростатической трубки показаны на рис. 20.2. Постоянные напряжения подаются на электроды от двух выпрямителей Et и Е2. Первый должен давать высокое напряжение (сотни и тысячи вольт) при токе в единицы миллиампер, источник Е2 — напряжение, в несколько раз меньшее. От этого же источника питаются и другие каскады, работающие совместно с трубкой. Поэтому он рассчитан на ток в десятки миллиампер.
Питание электронного прожектора осуществляется через делитель, со стоящий из резисторов Rlt R2> Я3 и Я4. Их сопротивление обычно большое (сотни килоом), чтобы делитель потреблял небольшой ток. Сама трубка также потребляет малый ток: в большинстве случаев десятки или сотни микроампер. Переменный резистор Ri является регулятором яркости. Он регулирует отрицательное напряжение модулятора, которое снимается с правого участка Rv Увеличение этого напряжения по абсолютному значению уменьшает число электронов в луче и, следовательно, яркость свечения. Для регулирования фокусировки луча служит переменный резистор R3, с помощью которого изменяют напряжение первого анода. При этом изменяется разность потенциалов, а следовательно, и напряженность поля между анодами. Если, например, понижать потенциал первого анода, то разность потенциалов между анодами возрастет, поле станет сильнее и его фокусирующее действие увеличится. Поскольку напряжение первого анода Г7-а1 не следует уменьшать до нуля или увеличивать до напряжения второго анода Г/а2, в делитель введены резисторы R2 и Я4. Напряжение второго анода Ua2 лишь немного меньше, чем напряжение Ех (разница — падение напряжения на резисторе Rt). Следует помнить, что скорость электронов, вылетающих из прожектора, зависит только от напряжения второго анода, но не от напряжения модулятора и первого анода. Некоторое число электронов попадает на аноды, особенно если аноды с диафрагмами. Поэтому в цепях анодов протекают токи в доли миллиампера и замыкаются через источник Ех. Например, электроны тока первого анода движутся в направлении от катода к аноду, затем через правый участок резистора R3 и через резистор Я4 к плюсу источника £ь далее внутри него и через резистор Ri к катоду. Для начальной установки светящегося пятна на экране служат переменные резисторы R 5 и R6, подключенные к источнику. Е2. Движки этих резисторов через резисторы Я7 и Rs с большим сопротивлением подключены к отклоняющим пластинам. Кроме того, с помощью резисторов R9 и R10, имеющих одинаковое сопротивление, устанавливается точка нулевого потенциала, соединенная с корпусом. У резисторов R5 и R6 на концах получаются потенциалы + 0,5£2 и — 0ДЕ2, а их средние точки имеют нулевой потенциал. Когда движки резисторов R5, R6 находятся в среднем положении, то на отклоняющих пластинах напряжение равно нулю. Смещая движки от среднего положения, можно подавать на пластины различные напряжения, отклоняющие электронный луч по вертикали или горизонтали и устанавливающие светящееся пятно в любой точке экрана. На отклоняющие пластины через разделительные конденсаторы Cj и С2 подается также переменное напряжение, например исследуемое напряжение при использовании трубки для осциллографии. Без конденсаторов отклоняющие пластины шунтировались бы по постоянному напряжению внутренним сопротивлением источника переменного напряжения. При малом внутреннем сопротивлении постоянное напряжение на отклоняющих пластинах резко уменьшилось бы. С другой стороны, источник переменного напряжения иногда дает и постоянное напряжение, которое нежелательно подавать на отклоняющие пластины. Во многих случаях недопустимо также, чтобы в источник переменного напряжения попадало постоянное напряжение, имеющееся в цепях отклоняющих пластин. Резисторы R7 и Rs включают для того, чтобы увеличить входное сопротивление отклоняющей системы для источников переменного напряжения. Без таких резисторов эти источники были бы нагружены на значительно меньшее сопротивление, создаваемое только резисторами R5, R6 и резисторами R9, Ri0. При этом резисторы R7 и Rs не понижают постоянное напряжение, подаваемое на отклоняющие пластины, так как через них не протекают постоянные токи. Полезным током является ток электронного луча. Электроны этого тока движутся от катода к люминесцентному экрану и выбивают из последнего
вторичные электроны, которые летят на проводящий слой и далее движутся в направлении к плюсу источника £ь затем через его внутреннее сопротивление и резистор Ri к катоду. Питание электродов трубки может быть выполнено и по другим вариантам, например от одного источника высокого напряжения. Электронные прожекторы. Электронный прожектор представляет собой электронно-оптическую систему, состоящую из нескольких электростатических электронных линз. Каждая линза образована неоднородным электрическим полем, которое вызывает искривление траекторий электронов (напоминающее преломление световых лучей в оптических линзах), а также ускоряет или тормозит электроны.
Простейший прожектор содержит две линзы. Первая линза, или линза предварительной фокусировки, образована, катодом, модулятором и первым анодом. На рис. 20.3 изображено поле в этой части прожектора. Эквипотенциальные поверхности показаны сплошными линиями, а силовые линии — штрихами. Как видно, часть силовых линий от первого анода идет к объемному заряду около катода, а остальные к модулятору, который имеет более низкий отрицательный потенциал, нежели катод. Линия ББ' условно делит поле на две части. Левая часть поля фокусирует поток электронов и придает им скорость. Правая часть поля дополнительно ускоряет электроны и несколько рассеивает их. Но рассеивающее действие слабее фокусирующего, так как в правой части поля электроны движутся с большей скоростью. Рассматриваемое поле аналогично системе двух линз — собирающей и рассеивающей. Собирающая линза сильнее рассеивающей, и в целом система является фокусирующей. Однако движение электронных потоков происходит пр иным законам, нежели преломление световых лучей в линзах. На рис. 20.4 показаны траектории электронов для крайних электронных пучков, выходящих из катода. Электроны движутся по криволинейным траекториям. Их потоки фокусируются и пересекаются в небольшой области, которая называется первым пересечением или скрещением и в большинстве случаев находится между модулятором и первым анодом. Первая линза короткофокусная, так как скорость электронов в ней сравнительно невелика, и их траектории искривляются достаточно сильно. С увеличением отрицательного напряжения модулятора по абсолютному значению повышается потенциальный барьер чжоло катода и все меньшее число электронов способно его преодолеть. Уменьшается катодный ток, а следовательно, ток электронного луча и яркость свечения экрана. Потенциальный барьер повышается в меньшей степени у центральной части катода, так как здесь сильнее влияет ускоряющее поле, проникающее от первого анода через отверстие модулятора. При некотором отрицательном напряжении модулятора потенциальный барьер у краев катода повышается настолько, что электроны уже не могут его преодолеть. Рабочей остается только центральная часть катода. Дальнейшее увеличение отрицательного напряжения уменьшает площадь рабочей части катода и в конце концов сводит ее к нулю, т. е. трубка запирается. Таким образом, регулирова ние яркости связано с изменением площади рабочей поверхности катода. Рассмотрим фокусировку электронного луча во второй линзе, т. е. в системе двух анодов (рис. 20.5, а). Линия ББ' делит поле между анодами на две части. В левую часть поля поступает расходящийся электронный поток, который фокусируется, а в правой части поля происходит рассеивание потока. Рассеивающее действие слабее фокусирующего, так как скорость электронов в правой части поля выше, чем в левой. Все поле подобно оптической системе, состоящей из собирающей и рассеивающей линз (рис. 20.5, б). Поскольку скорости электронов в поле между анодами высокие, то система оказывается длиннофокусной. Это и требуется, так как необходимо сфокусировать электронный пучок на экран, находящийся довольно далеко. При повышении разности потенциалов между анодами (уменьшении напряжения первого анода) напряженность поля увеличивается и фокусирующее действие усиливается. Принципиально можно регулировать фокусировку изменением напряжения второго анода, но это неудобно, так как будет изменяться скорость электронов, вылетающих из прожектора, что приведет к изменению яркости свечения на экране и повлияет на отклонение луча отклоняющими пластинами.
Недостаток описанного прожектора — взаимное влияние регулирования яркости и фокусировки. Изменение потенциала первого анода влияет на яркость, так как этот анод своим полем воздействует на потенциальный барьер около катода. А изменение напряжения модулятора сдвигает вдоль оси трубки область первого пересечения электронных траекторий, что нарушает фокусировку. Кроме того, регулирование яркости изменяет ток первого анода, а так как в его цепь включены резисторы с большими сопротивлениями, то меняется напряжение на нем, что приводит к расфокусировке, Изменение тока второго анода не влияет на фокусировку, так как в цепь этого анода не включены резисторы и, следовательно, напряжение на нем не может изменяться. В настоящее время применяют прожекторы, в которых между модулятором и первым анодом поставлен дополнительный, ускоряющий (экранирующий) электрод (рис. 20.6). Он соединен со вторым анодом, и напряжение на нем постоянно. Благодаря экранирующему действию этого электрода изменение потенциала первого анода при регулировании фокусировки практически не изменяет поле у катода. Фокусирующая система, состоящая из ускоряющего электрода и двух анодов, работает следующим образом. Поле между первым и вторым анодом такое же, как показано на рис. 20.5, а. Оно осуществляет фокусировку так, как было объяснено ранее. Между ускоряющим электродом и первым анодом имеется неоднородное поле, подобное полю между анодами, но не ускоряющее, а тормозящее. Электроны, влетающие в это поле расходящимся потоком, в левой половине поля рассеиваются, а в правой — фокусируются. При этом фокусирующее действие сильнее рассеиваю-
Ml A,l A2\ Рис. 20.6. Электронный прожектор с ускоряющим (экранирующим) электродом щего, так как в правой половине поля скорость электронов меньше. Таким образом, на участке между ускоряющим электродом и первым анодом также происходит фокусировка. Чем ниже напряжение первого анода; тем выше напряженность поля и сильнее фокусировка. Чтобы регулирование яркости меньше влияло на фокусировку, первый анод делают без диафрагм (рис. 20.6). На него электроны не попадают, т. е. ток первого анода равен нулю. Современные электронные прожекторы дают на экране светящееся пятно с диаметром, не превышающим 0,002 диаметра экрана. Электростатическое отклонение луча. Отклонение электронного луча и светящегося пятна на экране пропорционально напряжению на отклоняющих пластинах. Коэффициент пропорциональности в этой зависимости называется чувствительностью трубки. Если обозначить отклонение пятна по вертикали через у, а напряжение на пластинах «игрек» через Uy, то y = SyUy, (20.1) где Sy — чувствительность трубки для пластин «игрек». Подобно этому отклонение пятна по горизонтали х = SXUX. (20.2) Таким образом, чувствительность электростатической трубки есть отношение отклонения светящегося пятна на экране к соответствующему отклоняющему напряжению: Sx = x/Ux и Sy = y/Uy. (20.3) Другими словами, чувствительность есть отклонение светящегося пятна, приходящееся на 1 В отклоняющего напряжения. Выражают чувствительность в миллиметрах на вольт. Иногда под чувствительностью понимают величину, обратную Sx или Sy, и выражают ее в вольтах на миллиметр. Формулы (20.3) не означают, что чувствительность обратно пропорциональна отклоняющему напряжению. Если увеличить в несколько раз Uy, то во столько же раз возрастет у, а значение Sy останется без изменения. Следовательно, Sy не зависит от Uy. Чувствительность бывает в пределах 0,1 — 1,0 мм/В. Она зависит от режима работы и некоторых геометрических размеров трубки (рис. 20.7): S = U/(2dUa2), (20.4) где /пл — длина отклоняющих пластин; / — расстояние от середины пластин до экрана; d — расстояние между пластинами; Ua2 — напряжение второго анода. Эту формулу нетрудно объяснить. С увеличением /пл электрон дольше летит в отклоняющем поле и получает большее отклонение. При одном и том же угловом отклонении смещение светящегося пятна на экране возрастает с увеличением расстояния /. Если увеличить d, то напряженность поля между пластинами, а следовательно, отклонение уменьшится. Повышение напряжения Ua2 приводит к уменьшению-отклонения, поскольку возрастает скорость, с которой электроны пролетают поле между пластинами.
Рассмотрим возможность повышения чувствительности исходя из формулы (20.4). Увеличение расстояния / нежелательно, так как чрезмерно длинная трубка неудобна в эксплуатации. Если увеличить /пл или уменьшить d, то нельзя получить значительного отклонения луча, так как он будет попадать на пластины. Чтобы этого не произошло, пластины изгибают и располагают относительно друг друга так, как показано на рис. 20.8. Можно увеличить чувствительность, понижая напря
жение Ua2. Но это связано с уменьшением яркости свечения, что во многих случаях недопустимо, особенно при большой скорости движения луча по экрану. Понижение анодного напряжения ухудшает также фокусировку. При более высоком напряжении Г_/а2 электроны движутся с большими скоростями, меньше сказывается взаимное отталкивание электронов. Их траектории в электронном прожекторе располагаются под малым углом к оси трубки. Такие траектории называются параксиальными. Они обеспечивают лучшую фокусировку и меньшие искажения изображения на экране.
Дата добавления: 2015-05-06; Просмотров: 775; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |