КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Кристалл CdS 16 страница
Электронная (или ионная) оболочка сетки находится в динамическом состоянии. Так, например, ионы, коснувшись отрицательно заряженной сетки, отнимают от нее электроны и превращаются в нейтральные атомы, но на смену им к сетке притягиваются из плазмы новые ионы. Если увеличить отрицательное напряжение сетки, то она притянет больше ионов. Заряд ионной оболочки увеличивается и снова полностью компенсирует действие отрицательного заряда сетки. Иначе можно сказать, что поле, создаваемое зарядом сетки, сосредоточено между сеткой и ее ионной(или электронной)оболочкой, как между обкладками конденсатора. Это поле не проникает через оболочку, поэтому не может влиять на ток анода. Схема включения тиратрона тлеющего разряда в качестве реле показана на рис. 21.13. Напряжение анодного источника Ел должно быть меньше ^втах, а напряжение Ед — меньше того, которое необходимо для возникновения разряда в промежутке сетка — катод. Резистор Rg ограничивает сеточный ток и.поэтому увеличивает входное сопро-
еево
? О О 11 О о—
Рис. 21.13. Включение тиратрона тлеющего разряда в качестве реле
тивление схемы для источника импульсов, отпирающих тиратрон. Когда положительный импульс напряжения, достаточный для отпирания, поступает на сетку, то возникает разряд на участке сетка — катод. Если при этом получается необходимый ток сетки, то разряд переходит и на анод. Следовательно, импульс напряжения и тока от маломощного генератора в цепи сетки вызывает значительный ток в нагрузке RH, включенной в анодную цепь. Ряд тиратронов тлеющего разряда выпускается с двумя сетками. В таких тиратронах управляющей является вторая сетка, более удаленная от катода. На первую сетку подается постоянное положительное напряжение, и в цепи этой сетки все время существует очень небольшой ток (единицы или десятки микроампер) так называемого подготовительного разряда. На второй сетке постоянное положительное напряжение ниже, чем на первой. Поэтому тормозящее поле между сетками не допускает электроны к аноду. При подаче импульса дополнительного напряжения на вторую сетку тиратрон отпирается, т. е. электроны проникают сквозь вторую сетку, и в цепи анода возникает тлеющий разряд. Наши отечественные тиратроны тлеющего разряда, как правило, имеют сверхминиатюрное оформление и наполнены неоном, или аргоном, или неоно-аргоновой смесью. Они могут работать при температуре окружающей среды от — 60 до +100° С. Их долговечность составляет несколько тысяч часов. Рабочие напряжения сеток и анода десятки — сотни вольт. Время восстановления управляющего действия сетки после прекращения анодного тока зависит от длительности деионизации и обычно составляет десятки или сотни микросекунд. В качестве примера применения тиратрона рассмотрим простейшую схему тиратронного генератора пилообразного напряжения (рис» 21.14, а). От источника анодного питания £а через резистор R заряжается конденсатор С. Параллельно конденсатору включен тиратрон Л. Во время заряда конденсатора напряжение на нем растет, и когда оно достигает напряжения возникновения разряда ГУВ, то тиратрон отпирается и начинает проводить ток. Сопротивление его становится сравнительно малым, и конденсатор быстро разряжается через тиратрон. Напряжение понижается до напряжения прекращения разряда Un. Как только разряд в тиратроне прекратится, снова начнется сравнительно медленный заряд конденсатора через резистор, сопротивление которого значительно больше сопротивления открытого тиратрона, и весь процесс будет повторяться.
График пилообразного напряжения, получающегося на аноде тиратрона и на конденсаторе, показан на рис. 21.14,6. Так как напряжение Г7П у тиратронов невелико, а напряжение ГУВ достигает сотен вольт, то подобный генератор может выдавать пилообразное напряжение с большой амплитудой. Чем больше сопротивление R и емкость С, тем медленнее происходит заряд и тем ниже частота. Кроме того, если увеличить положительное напряжение сетки тиратрона, то понизится напряжение ГУВ и это вызовет уменьшение амплитуды и повышение частоты. 21.5. ИНДИКАТОРНЫЕ ПРИБОРЫ В. современной РЭА широко применяются различные индикаторные приборы, в частности так называемые знаковые и цифровые индикаторы. Некоторые из них относятся к газоразрядным приборам тлеющего разряда, но существуют и электронные электровакуумные индикаторы. Разработаны и используются также полупроводниковые индикаторные приборы, о которых рассказано в гл. 13. Неоновые лампы применяются в качестве индикаторов напряжения и для других целей. Они представляют собой приборы тлеющего разряда, работающие в режиме аномального катодного падения обязательно с ограничительным резистором Rorp.
Вольт-амперная характеристика приведена на рис. 21.15. При возникновении разряда (точка А) происходит скачок тока и напряжения и начинается свечение. Дальнейшее повышение напряжения вызывает повышение тока. При этом увеличивается плотность тока катода и яркость свечения. Характерно то, что при уменьшении напряжения кривая пойдет выше, чем при увеличении. Разряд прекращается при более низком напряжении, нежели возникает {Un < Г7В). В момент прекращения разряда ток скачком уменьшается до нуля, а напряжение скачком повышается, поскольку падение напряжения на резисторе Rorp скачком уменьшается до нуля и подводимое к цепи напряжение перераспределяется. Экспериментально напряжение Г7П измеряют как наиболее низкое напряжение при наличии тока и свечения в лампе (перед прекращением разряда). Разница между напряжениями Un и Г7В характерна для всех газоразрядных приборов, в частности для стабилитронов. У неоновых ламп напряжение ГУП на несколько единиц или десятков вольт ниже, чем напряжение Г7В. Это объясняется тем, что перед возникновением разряда газ неионизирован. А перед прекращением разряда газ ионизирован, и разряд существует при более низком напряжении. Неоновая лампа применяется в качестве индикатора постоянного и переменного напряжения. При переменном напряжении разряд возникает в момент, когда мгновенное значение напряжения становится равным напряжению иъ. Промышленность выпускает много различных неоновых ламп. Напряжение Г7В у них может быть 50 — 200 В, а иногда и выше. Рабочий ток при нормальном свечении — от десятых долей миллиампера до десятков миллиампер. Значительный интерес представляет управляемая трехэлектродная индикаторная лампа, лмеющая анод и два катода: индикаторный и вспомогательный, расположенные внутри анода. Через купол баллона можно видеть свечение газа только около индикаторного катода. Индикаторный катод ИК подключен к минусу источника через резистор R, а вспомогательный катод ВК непосредственно (рис. 21.16). Когда на лампу подано только напряжение от анодного источника, работает вспомогательный катод. Так как он заслонен анодом,
Рис. 21.16. Включение управляемой индикаторной лампы
то свечения газа не видно. Пусть теперь на резистор в цепи индикаторного свечения катода подано дополнительное управляющее напряжение в несколько единиц вольт с такой полярностью, чтобы' оно суммировалось с напряжением анодного источника. Тогда напряжение между анодом и индикаторным катодом возрастает, разряд перебрасывается на этот катод и лампа дает видимое свечение. Если же дополнительное напряжение, подаваемое на резистор, снять, то разряд снова будет только между анодом и вспомогатель-> ным катодом. Свечение газа у индикаторного катода прекращается.
Знаковые индикаторы тлеющего разряда широко распространены. Принцип устройства их показан на рис. 21.17. В баллоне с неоном находятся катоды, выгнутые из проволоки в виде цифр или других знаков и расположенные один за другим. На рис. 21.17, а приведены для упрощения лишь первые два катода в виде цифр 1 и 2. В цифровых индикаторах имеется 10 катодов в виде цифр от 0 до 9. Анод обычно сделан из проволочной сетки. При подаче напряжения между анодом и одним из катодов возникает свечение газа (около катода), т. е. виден светящийся знак. Толщина светящейся линии примерно 1 — 2 мм. Выпускаются подобные индикаторы с так называемыми сегментными катодами, синтезирующими изображение (рис. 21.17,6). Включение этих катодов в той или иной комбинации дает светящееся изображение цифры или какого-то другого знака. В настоящее время выпускается много типов подобных индикаторов на различные знаки. Знаковые накалъные вакуумные индикаторы дают синтезированное изображение в виде цифр или букв, составленное из накаленных проволочек (рис. 21.18). В баллоне с вакуумом и \Л к) Рис. 21.18. Знаковый накальный вакуумный индикатор
на теплостойкой изоляционной плате расположены вольфрамовые проволочки (нити накала). Один вывод у них делается общий. Подключение к источнику накала той или иной комбинации проволочек дает светящееся изображение цифры или буквы. Свечение желтого цвета соответствует рабочей температуре примерно 1200° С. Долговечность составляет десятки тысяч часов. Вакуумные люминесцентные индикаторы представляют собой многоанодные триоды, имеющие оксидный катод прямого накала, сетку и аноды-сегменты, покрытые люминофором. Возможное расположение анодов для получения синтезированных знаков показано на
рис. 21.19. Включение нескольких анодов в определенной комбинации дает светящийся знак большей частью зеленого цвета. Электролюминесцентные индикаторы (ЭЛИ) предназначены для отображения различной информации в системах управления и контроля. В них используется явление электролюминесценции, состоящее в том, что некоторые вещества способны излучать свет под действием электрического поля. По устройству ЭЛИ представляет собой плоский конденсатор (рис. 21.20). На металлический электрод 4 нанесен слой диэлектрика 3 — органической смолы с люминесцирующим порошкам, основу которого обычно составляет сульфид или селенид цинка. Добавление к люминофору активаторов позволяет получать различный цвет свечения: зеленый, голубой, желтый, красный, белый. Сверху люминесцирующий слой покрыт электропроводящей прозрачной пленкой 2. Для предохранения от внешних воздействий служит стеклянная пластинка 1. Если к электродам 4 и 2 приложить переменное напряжение, то под действием электрического поля в слое 3 возникает свечение. Прозрачный электрод 2 обычно сделан из оксида олова и является сплошным, а электрод 4 имеет форму цифр, или букв, или сегментов для получения синтезированных знаков или геометрических фигур. Электрод 4 может быть растровым, состоящим из ряда полос, или матричным — с большим числом точечных элементов. Индикаторы эти бывают различных типов и размеров, дают светящееся изображение на темном фоне или темное изображение на светящемся фоне, могут быть одноцветными или многоцветными. Наиболее распространены буквенно-цифровые сегментные индикаторы. Для изображения цифр они имеют от 7 до 9 сегментов, а индикаторы с 19 сегментами позволяют высвечивать все цифры и буквы русского и латинского алфавита. Обычно ЭЛИ оформляются в пластмассовых корпусах. Для питания их применяется переменное синусоидальное напряжение 220 В частотой от 400 до 1200 Гц. Линейные размеры высвечиваемых знаков могут быть от единиц до десятков миллиметров, и в зависимости от этого потребляется ток от десятых долей миллиампера до десятков миллиампер. Срок службы ЭЛИ составляет несколько тысяч часов. Рабочая температура окружающей среды допускается обычно от —40 до -|-50оС. Несомненное достоинство ЭЛИ — малое потребление мощности при относительно высокой яркости изображения, плоская конструкция, высокая механическая прочность, большой срок службы. Недостаток, как и у многих других индикаторов, — необходимость применения довольно сложных систем управления. Жидкокристаллические индикаторы (ЖКИ) основаны на использовании так называемых жидких кристаллов (ЖК), открытых еще в прошлом веке и представляющих собой некоторые органические жидкости с упорядоченным расположением молекул, характерным для кристаллов. В настоящее время известно большое число жидкокристаллических веществ и они изучены достаточно хорошо. Жидкие кристаллы прозрачны для световых лучей, но под действием электрического поля напряженностью 2 — 5 кВ/см структура их нарушается, молекулы располагаются беспорядочно и жидкость становится непрозрачной.
Эти индикаторы могут иметь различные конструкции и работать либо в проходящем свете, созданном каким-либо специальным источником, либо в свете любого источника (искусственного или естественного), отражающемся в индикаторе. Рассмотрим этот последний, наиболее распространенный тип ЖКИ (рис. 21.21). Индикаторы такого типа применяются в наручных электронных часах, микрокалькуляторах и других устройствах. Между двумя стеклянными пластинками 1 и 3, склеенными с помощью полимерной смолы 2, находится слой жидкого кристалла 4 толщиной 10 — 20 мкм. Пластинка 3 покрыта сплошным проводящим слоем (электрод 5) с зеркальной поверхностью. На пластинку 1 нанесены прозрачные слои — электроды А, Б, В,.... от которых сделаны выводы, не показанные на рисунке. Эти электроды имеют форму цифр, или букв, или сегментов для синтезирования различных знаков. Если на знаковые электроды напряжение не подано, то ЖК прозрачен, световые лучи внешнего естественного освещения проходят через него, отражаются от электрода 5, выходят обратно и никаких знаков не видно. Но если на какой-то электрод, например А, подано напряжение, то ЖК под этим электродом становится непрозрачным, лучи света не- проходят через эту часть жидкости (6), и тогда на светлом фоне виден темный знак. Жидкокристаллические индикаторы весьма экономичны. Ток, потребляемый для воспроизведения одного знака, не превышает 1 мкА. Долговечность ЖКИ составляет десятки тысяч часов. Недостаток этих индикаторов — низкое быстродействие. Время появления или исчезновения знака, т. е. время перехода молекул ЖК из упорядоченного расположения в беспорядочное или обратно, доходит до 200 мс. Для управления ЖКИ применяются довольно сложные устройства, обычно на основе интегральных микросхем. Помимо рассмотренных индикаторных приборов простейшего типа разработаны и выпускаются еще и другие, более сложные.
21.6. ДИСПЛЕИ Дисплеи — это оконечные устройства информационных систем, служащие для визуального изображения информации и связи человека с машиной. Широко применяются дисплеи малого размера, например в электронных часах или микрокалькуляторах, и дисплеи большого размера. Различные типы дисплеев основаны на использовании разнообразных физических и химических явлений. Все дисплеи можно разделить на две большие группы: излучающие свет и модулирующие свет. Светоизлучающий дисплей должен давать свечение достаточной яркости. Особенно большая яркость необходима, если дисплей применяется при солнечном освещении. Важен цвет свечения: человеческий глаз наиболее чувствителен к желтому и желто-зеленому цвету. Изображение должно быть контрастным. Чем больше отношение максимальной яркости к минимальной, тем выше контрастность. Желательна широкая диаграмма направленности дисплея, т. е. возможность хорошей видимости изображения под разным углом зрения. Для управления работой дисплея применяются токи и напряжения различного вида и амплитуды. Всегда желательна возможно меньшая потребляемая мощность. Дисплеи, работающие с устройством на интегральных схемах, должны питаться напряжением не более 30 В. У дисплеев большого размера, потребляющих значительную мощность, важен более высокий КПД. Высокое быстродействие не требуется для дисплеев, так как человеческий глаз не может различать изменения, происходящие быстрее чем за 0,1 с. Разрешающая способность дисплея оценивается минимальным размером наблюдаемого элемента. Это может быть квадрат со стороной не менее 50 мкм. У многих дисплеев этот элемент больше, причем он зависит от яркости и расстояния от дисплея до наблюдателя. Некоторые типы дисплеев обладают «памятью», т. е. могут сохранять изображение без потребления или с малым потреблением энергии. Рассмотрим теперь основные типы светоизлучающих дисплеев. В электронно-лучевых дисплеях используются электронно-лучевые трубки, подробно рассмотренные в гл. 20. Дисплеи на светоизлучающих диодах (принцип работы этих диодов описан в § 13.7), как правило, имеют небольшие (несколько сантиметров) линейные размеры и низкое (не более 5 В) напряжение питания. Дисплеи на газоразрядных элементах (в § 21.5 уже рассмотрены газоразрядные индикаторы), иначе плазменные, имеют две взаимно перпендикулярные системы электродов в виде проводящих полос. Между электродами инертный газ — неон, или ксенон, или смесь газов. Такие системы иногда называют еще газоразрядными индикаторными панелями (ГИП). Дисплеи с электродами в виде полос могут иметь различное число электродов, например 512 горизонтальных и столько же вертикальных. Разрешающая способность характеризуется числом линий (обычно две-три) на 1 мм. Возможно также применение точечных электродов. Неон дает оранжевое свечение. Иногда на подложку, на которой расположены электроды, наносят люминофор, дающий свечение другого цвета. Питание этих дисплеев возможно постоянным или переменным током. Электролюминесцентные дисплеи составлены из электролюминесцентных индикаторов (ЭЛИ). Рассмотрим основные типы свето-модулирующих дисплеев. Жидкокристаллические дисплеи (ЖКД) потребляют малую мощность, дают хорошую видимость изображения даже при высоком уровне внешней освещенности, имеют низкую стоимость, бывают малого (например, в часах) и большого размера. Электрохромные дисплеи (ЭХД) основаны на использовании электрохромно-го эффекта, который заключается в том, что некоторые вещества под действием электрического поля или при прохождении тока изменяют свой цвет. В качестве электрохромного вещества чаще всего применяют триоксид вольфрама W03. Его пленка под напряжением приобретает синий цвет. Для этого требуется напряжение всего лишь 0,5 — 1,5 В. При перемене полярности напряжения пленка приобретает исходный цвет. Эти дисплеи потребляют небольшую мощность и обладают «памятью», т. е. сохраняют цветное изображение некоторое время (минуты и даже часы) без потребления мощности. Так как ЭХД на W03 имеют ряд недостатков, в частности невысокое быстродействие и небольшой срок службы, то ведутся разработки таких дисплеев на других веществах. Электрофорезные дисплеи (ЭФД) основаны на явлении электрофореза, который состоит в том, что под действием электрического поля в жидкости перемещаются взвешенные частицы (например, частицы пигмента в окрашенной жидкости), притягиваясь к какому-то электроду или отталкиваясь от электрода в зависимости от знака потенциала. Жидкость выбирается с хорошими диэлектрическими свойствами для уменьшения потребляемого тока. Пигмент выбирается по цвету резко отличным от жидкости. Напряжение для ЭФД составляет десятки вольт. Срок службы может достигать десятков тысяч часов. В течение этого срока могут происходить десятки миллионов переключений. Быстродействие ЭФД невысокое. 21.7. КРАТКИЕ СВЕДЕНИЯ О РАЗЛИЧНЫХ ГАЗОРАЗРЯДНЫХ ПРИБОРАХ Помимо рассмотренных газоразрядных приборов в РЭА встречаются и некоторые другие. Так, например, для счета импульсов предназначены приборы тлеющего разряда декатроны с большим числом катодов, расположенных по окружности. Приходящие импульсы переводят разряд с одного катода на следующий. По свечению одного из десяти индикаторных катодов определяется число импульсов. Каскадное включение нескольких декатронов позволяет отсчитывать не только единицы импульсов, но также десятки, сотни, тысячи и т. д. Это достигается тем, что при разряде около десятого катода декатро-на, считающего единицы импульсов, передается импульс на следующий де-катрон, считающий десятки импульсов, и возникает свечение на первом катоде, и т. д. В настоящее время счетные устройства с цифровыми индикаторами вытеснили декатроны. Среди приборов дугового разряда следует отметить газотроны, представляющие собой мощные диоды с термоэлектронным катодом, наполненные инертным газом или парами ртути. Они предназначены для выпрямления высоких напряжений и больших токов, причем падение напряжения на самих газотронах всего лишь 10—30 В. В качестве мощных выпрямителей служат также ртутные вентили и экситроны с одним или несколькими анодами, имеющие жидкий ртутный катод с электростатической эмиссией. Более совершенные ртутные вентили — игнитроны имеют также ртутный катод и дополнительный пусковой электрод, облегчающий возникновение дугового разряда. Широко применялись для выпрямления, в схемах автоматики и во многих других устройствах тиратроны дугового разряда. Это газонаполненные триоды с термоэлектронным катодом. У них, так же как и у тиратронов тлеющего разряда, сетка теряет свое управляющее действие после возникновения дугового разряда, т. е. она может только удерживать тиратрон в запертом состоянии и отпирать его. В некоторых тиратронах имеется еще экранирующая сетка. Изменяя напряжение на ней, можно изменять напряжение возникновения разряда. На тиратронах дугового разряда работают управляемые выпрямители, в которых выпрямленное напряжение регулируется изменением напряжения управляющих сеток тиратронов. Расход мощности на процесс управления в цепях этих сеток очень небольшой, и за счет этого получается высокий КПД. Специальные импульсные тиратроны дугового разряда служат для получения кратковременных импульсов большой мощности. Одна из разновидностей тиратронов дугового разряда — таситроны, в которых благодаря особой конструкции сетка управляет не только возникновением, но и прекращением разряда. Оригинальным прибором является ар-катрон, представляющий собой тиратрон дугового разряда, в котором катод нагревается не током, а за счет ионной бомбардировки. Все эти газоразрядные приборы весьма инерционны и поэтому непригодны для высоких частот, так как процесс рекомбинации после выключения (запирания) прибора требует значительного времени. Приборы с инертными газами могут работать на частотах в десятки килогерц, а приборы с ртутными парами — на гораздо более низких частотах. ФОТОЭЛЕКТРОННЫЕ ПРИБОРЫ 22.1. ФОТОЭЛЕКТРОННАЯ ЭМИССИЯ Фотоэлектронная эмиссия, называемая иначе внешним фотоэффектом, представляет собой электронную эмиссию под действием электромагнитного излучения. Эмитирующий электрод при этом называют фотоэлектронным катодом (фотокатодом), а испускаемые им электроны — фотоэлектронами. Начало изучения фотоэлектронной эмиссии относится к 1886 г., когда немецкий ученый Г. Герц заметил, что напряжение возникновения электрического разряда между электродами снижается, если осветить один из этих электродов. Это явление с 1888 г. стал исследовать профессор Московскогоу университета А. Г. Столетов. Он установил важные свойства внешнего фотоэффекта, но не мог его объяснить, так как в то время еще не были известны электроны. Рассмотрим законы и характерные особенности фотоэлектронной эмиссии. 1. Закон Столетова. Фототок гф, возникающий за счет фотоэлектронной эмиссии, пропорционален световому потоку Ф: /ф = S<t>, (22.1) где S — чувствительность фотокатода, выражаемая обычно в микроамперах на люмен. Если поток Ф монохроматичен, т. е. содержит лучи только одной длины волны, то чувствительность называют монохроматической и обозначают Sx. Чувствительность к потоку белого (немонохроматического) света, состоящего из лучей с разной длиной волны, называют интегральной и обозначают 2. Закон Эйнштейна. Еще в 1905 г. А. Эйнштейн установил, что при внешнем фотоэффекте энергия фотона hv превращается в работу выхода W0 и кинетическую энергию вылетевшего электрона: hv=W0 + 0,5mv2, (22.2) где т и v — масса и скорость фотоэлектрона; v — частота излучения; h — постоянная Планка, равная 6,63 х х Ю-34 Дж-с. Напомним читателю, что электромагнитное излучение имеет двойственную природу. С одной стороны, это электромагнитные волны, характеризуемые длиной Я, и частотой v. А с другой стороны, излучение можно рассматривать как поток частиц — фотонов, обладающих энергией hv. Закон Эйнштейна говорит о том, что энергия фотона hv передается электрону, который затрачивает на. выход из фотокатода энергию W0, а разность hv — W0 представляет собой энергию вылетевшего электрона. 3. Для внешнего фотоэффекта существует так называемая красная, или длинноволновая, граница. Если уменьшать частоту излучения v, то при некоторой частоте v0 фотоэлектронная эмиссия прекращается, так как на этой частоте hv0 = W0 и энергия фотоэлектронов становится равной нулю. Частоте v0 соответствует длина волны Х0 = c/v0, где с = 3-108 м/с. При v < v0 или X > Х0 фотоэлектронной эмиссии не может быть, так как hv < hv0, т. е. энергии фотона недостаточно даже для совершения работы выхода. 4. Для фотоэффекта характерна малая инерционность. Фототок запаздывает по отношению к излучению всего лишь на несколько наносекунд. Фотокатоды иногда характеризуются отношением числа фотоэлектронов к числу фотонов, вызвавших эмиссию. Этот параметр получил название квантового выхода электронов. Если бы каждый фотон вызывал выход одного электрона, то квантовый выход равнялся бы единице. Но большая часть фотонов не участвует в создании фототока: часть фотонов имеет длину волны больше А,0, часть проникает глубоко в катод и рассеивает там свою энергию, наконец, часть фотонов отражается от поверхности катода. Обычно квантовый выход не превышает 2 %. Рабрта выхода W0 и граничная длина волны Я,0 для некоторых элементов приведены ниже: Се К Sb Ge Si W0, эВ....1,9 2,3 4,0 4,4 4,8),0,мкм....0,66 0,55 0,31 0,28 0,21
Спектру видимого излучения соответствуют длины волн 0,38 — 0,78 мкм, и, как видно из приведенных данных, часть лучей может вызвать фотоэлектронную эмиссию лишь из цезия и калия. Поэтому фотокатоды обычно делают не из чистого металла. Так, например, широко применяемый оксидно-цезиевый фотокатод, состоящий из серебра, оксида цезия и чистого цезия, имеет уменьшенную работу выхода, и для него Я,0 = 1,1 мкм.
Чувствительность фотокатода зависит от длины волны излучения. Эта зависимость S = f(k) называется спектральной характеристикой и может быть двух видов (рис. 22.1). Кривая 1 соответствует нормальному фотоэффекту, который наблюдается у толстых катодов из чистых металлов, а кривая 2 получается при селективном (избирательном) фотоэффекте, который характерен для тонких катодов из особо обработанных щелочных металлов. Следует отметить, что чувствительность с течением времени постепенно уменьшается, т. е. наблюдается явление «усталости», или «утомления», фотокатода.
Дата добавления: 2015-05-06; Просмотров: 677; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |