КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Табулирование маркетинговых данных
Табулирование - это процесс обработки информации, заключающейся в подсчете числа событий попавших в ячейки ответов на вопросы. Существует две разновидности табуляции – простая и перекрестная. Простая табуляция может быть использована для нескольких целей: - определения коэффициента безответности позиции вопроса; - исключения грубых ошибок при анализе или кодировании; - определения закономерности распределения переменной; - подведения итогов исследований. При простой табуляции производится подсчет событий созданных из одной переменной. При этом табуляция одной переменной не зависит от табуляции другой переменной. Количество событий определяется размером выборки. Коэффициент безответности - Кб служит показателем качества исследований или качества составления анкеты, а также глубины заботы респондента о вопросе анкеты. Коэффициент безответности выражается как отношение позиций без ответа - Пб к общему числу анкетируемых позиций – П т.е. Кб = (1- Пб/П) 100%. Если эта величина превышает 40%, то сомнительным становится качество проведенного исследования. Для оптимизации полученных исследований в случае Кб >40% используются следующие приемы. 1. Выделить пустые позиции в отдельную категорию с целью отдельного анализа. 2. Исключить вопрос при анализе анкет. 3. Аналитик, на основании общей информации анкеты, может самостоятельно подставить значение ответа в утраченную позицию. Но это может привести к некоторым искажениям результата опроса. Исключение (локализация) грубых ошибок представляет собой ликвидацию ошибок, описок при анализе информации, кодировании, записи. Например, количество респондентов выразивших свое отношение к потреблению пива (таблица 7.22). Таблица 7.22 Фрагмент анкеты «Суточное потребление пива в литрах»
Цифра 16 в количестве репондентов категории «женщины» является грубой нелогичной ошибкой. Это значение можно скорректировать на основании построения аппроксимирующей кривой (тренда). Локализация посторонних значений заключается в исключении наблюдения из анализа или определение факторов оказавших такое влияние на показатель. Локализация не является ошибкой, она является информацией для размышления о причине появления такого результата. Цифра 16 также может нести причинно-следственный вопрос о ситуации во время анкетирования и может быть верной. Простая одномерная табуляция позволяет определить закон изменения импирических данных. Закономерность изменения импирических данных лучше всего представить в виде гистограммы. При перекрестной табуляции производится подсчет событий созданных на двух и более переменных рассматриваемых одновременно, т.е. такие переменные обрабатываются одновременно. Например, результаты исследования двух взаимосвязанных характеристик - потребителей продукта «Х» в магазине «Y». Табуляция в зависимости от сложности может выполняться на компьютере, на арифмометре, от руки или в уме. Количество табуляций определяется количеством альтернативных ответов (переменных) в системе анкеты. Каждая переменная занимает особое место в записи системы выборки, что определено кодировочной таблицей. Каждому наблюдению выборки назначена одна строка. Если количество информации не вмещается в одну строку, необходимо вводить дополнительные строки. В таблице приведен сокращенный вариант анкеты, которая была заполнена потребителями пива известной кампании. 1. Сколько раз в неделю Вы покупаете пиво? - ни разу - 1 раз - 2 раза - 3 раза - 4 раза - каждый день 2. Сколько бутылок приобретаете при покупке пива? - 1 - 2 - 3 - более 3 3. Вы когда-нибудь пробовали пиво из кег? -никогда не пробовал -пробовал давно -пробовал в этом году 4. Насколько Вы уверены, что новый сорт пива «Х» известной компании будет являться вашим любимым сортом исходя из критериев:
Фрагмент кодовой таблицы анкеты потребителей пива:
Рассмотрим построение таблиц сопряженности признаков (кросс-табуляция). Построение таблиц сопряженности позволяет увидеть одновременно значения двух или больше переменных. Кросс табуляция представляет собой процесс объединения распределения частот значений двух или больше переменных в одну таблицу. Она объясняет, как одна переменная, например, объем потребления мяса, связана с другой переменной, такой как доход. В таблицах сопряженных признаков показывается совместное распределение значений двух или более переменных, обладающих ограниченным числом категорий или принимающих определенные значения. Категории одной переменной помещают в таблицу так, чтобы они размещались в ней (сопрягались) в соответствии с категориями другой или другими несколькими переменными. Таким образом, распределение частот одной переменной подразделяется на группы в зависимости от категорий других переменных. Например, итог процедуры кросс-табуляции представлен в табл. 7.23. Таблица 7.23 Изучение потребления жевательной резинки в зависимости от пола
Кросс-табуляция позволяет осуществить создание ячейки для каждой комбинации категорий двух переменных. Число в каждой ячейке показывает количество респондентов, давших эту комбинацию ответов. Кросс-табуляцию с двумя переменными можно рассматривать как двумерную. Рассмотрим из табл. 7.23, связано ли потребление жевательной резинки с полом? Это можно выяснить из табл. 7.24. Таблица 7.24
Какую из рассмотренных таблиц считать полезнее зависит от того, что можно считать зависимой и что независимой переменной. В табл. 7.24 пол потребителя можно считать как независимую переменную, потребление – как зависимую. Вычисление процентов в направлении зависимой переменной через независимую бессмысленно, интенсивное пользование жевательной резинкой является причиной того, что такими людьми являются мужчины, что неправдоподобно. Связь между полом потребителя и уровнем потребления можно уравновесить через третью переменную, например, доходом или культурой. Третья переменная предназначена для уточнения связи между двумя переменными; для указания отсутствия связи между двумя переменными; указания скрытой связи между переменными; для подтверждения отсутствия изменений в первоначальной связи. Например, приобретение автомобиля в зависимости от семейного положения (табл. 7.25). Таблица 7.25 Покупка марки автомобиля в зависимости от семейного положения
Для анализа таблицы была введена третья переменная – пол покупателя (табл. 7.26). Таблица 7.26 Связь между покупкой автомобиля и семейным положением
Из табл. 7.26 видно, что несемейные люди меньше покупают иномарки, чем семейные. Введение третьей переменной (пол) уточнило связь между семейным положением и покупкой модели автомобиля. На практике процесс кросс-табуляции необходимо вести по следующим этапам. 1. Проверьте нулевую гепотезу о том, что отсутствует связь между переменными, используя Хи -квадрат. Если вам не удалось отклонить нулевую гипотезу, то связь между переменными отсутствует. 2. Если нулевая гипотеза отклонена, то определите тесноту связи, используя коэффициент «» или другие статистики. 3. Если нулевая гипотеза отклонена, то поясните характер связи, вычислив проценты в направлении независимой переменной через зависимую переменную. Обработанные табулированные данные можно представить в виде баннера – последовательности перекрестных табуляций между критерием или зависимой переменной и несколькими факторными переменными, оформленного в виде таблицы. Зависимая переменная определяет название строк таблицы, факторные переменные определяют столбцы. Каждая строка состоит из двух строк. В верхнем значении строки показаны абсолютные значения исследуемых характеристик, в нижней – тоже, но в процентном выражении. Например, табл. 7.27. Таблица 7.27 Пример заполнения баннерной таблицы
Преимущество баннерных таблиц в эффективной форме представления разнообразной информации и удобства пользования ею. Можно построить таблицу сопряженности больше, чем для трех переменных, но интерпретация полученных результатов достаточно сложная. Кроме того, число ячеек значительно увеличится. Таким образом, кросс табуляция – неэффективный способ проверки связей для ситуаций с несколькими переменными, она рассматривает просто связь между переменными, а не причинность. Чтобы изучить причинно-следственную связь, необходимо провести соответствующее причинно-следственное исследование.
Дата добавления: 2015-03-31; Просмотров: 2062; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |