Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные теоретические сведения




Численное интегрирование

Пусть на отрезке [а,b] задана функция f(x). Определенный интеграл определяется как площадь, ограниченная подынтегральной функцией f(x), осью x и ординатами в точках «a» и «b»

 

 

Определенным интегралом от функции f(x) на отрезке [а, b] называется предел интегральной суммы при неограниченном увеличении числа точек разбиения.

Во многих случаях, когда подынтегральная функция задана в аналитическом виде, определенный интеграл удается вычислить непосредственно по формуле Ньютона-Лейбница. Она состоит в том, что определенный интеграл равен приращению первообразной F(х) на отрезке интегрирования. На практике этой формулой часто нельзя воспользоваться по двум основным причинам:

Вид функции не допускает непосредственного интегрирования, т.е. первообразную нельзя выразить в элементарных функциях

Значения функций f(х) заданы таблично (множество хi конечно)

В этих случаях используются методы численного интегрирования.

Частным случаем в методах численного интегрирования является тот, когда величина элементарного отрезка ∆х,- величина постоянная и может быть вынесена за знак интегральной суммы. Эта величина называется шагом интегрирования и обозначается обычно ∆х.

Рассмотрим методы численного интегрирования.




Поделиться с друзьями:


Дата добавления: 2015-03-29; Просмотров: 310; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.