КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общий вид транспортной задачи
Транспортная задача Транспортная работа - это особый класс задач линейного программирования. Задача заключается в отыскании такого плана перевозок продукции с m складов в пункт назначения n который, потребовал бы минимальных затрат. Если потребитель j получает единицу продукции (по прямой дороге) со склада i, то возникают издержки Сij. Предполагается, что транспортные расходы пропорциональны перевозимому количеству продукции, т.е. перевозка k единиц продукции вызывает расходы k С i j. Математическая модель где xij количество продукции, поставляемое со склада i потребителю j, а С i j издержки (стоимость перевозок со склада i потребителю j). Если условие равны, то транспортная задача называется сбалансированной т. е. закрытой. Если данное условие не выполняется, то задача называется несбалансированной или открытой и вводится либо фиктивный пункт производства, либо фиктивный пункт назначения.
Далее, где ai есть количество продукции, находящееся на складе i, и bj - потребность потребителя j. Замечание(для открытых задач) 1. Если сумма запасов в пунктах отправления превышает сумму поданных заявок то количество продукции, равное остается на складах. В этом случае мы введем "фиктивного" потребителя n +1 с потребностью и положим транспортные расходы pi,n +1 равными 0 для всех i. 2. Если сумма поданных заявок превышает наличные запасы то потребность не может быть покрыта. Эту задачу можно свести к обычной транспортной задаче с правильным балансом, если ввести фиктивный пункт отправления m + 1 с запасом и стоимость перевозок из фиктивного пункта отправления во все пункты назначения принять равным нулю.
Дата добавления: 2015-03-29; Просмотров: 419; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |