Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы визуализации




Методы поиска ассоциативных правил

Факторный анализ

Алгоритм PAM (partitioning around Medoids)

PAM является модификацией алгоритма k-средних, алгоритмом k-медианы (k-medoids). Алгоритм менее чувствителен к шумам и выбросам данных, чем алгоритм k-means, поскольку медиана меньше подвержена влияниям выбросов.

PAM эффективен для небольших баз данных, но его не следует использовать для больших наборов данных.

 

Факторный анализ - это метод, применяемый для изучения взаимосвязей между значениями переменных.

Вообще, факторный анализ преследует две цели:

сокращение числа переменных;

классификацию переменных - определение структуры взаимосвязей между переменными.

Соответственно, факторный анализ может использоваться для решения задач сокращения размерности данных или для решения задач классификации.

Критерии или главные факторы, выделенные в результате факторного анализа, содержат в сжатом виде информацию о существующих связях между переменными. Эта информация позволяет получить лучшие результаты кластеризации и лучше объяснить семантику кластеров. Самим факторам может быть сообщен определенный смысл.

 

Ассоциативное правило имеет вид: "Из события A следует событие B".

Алгоритм AIS.

В алгоритме AIS кандидаты множества наборов генерируются и подсчитываются "на лету", во время сканирования базы данных.

Алгоритм SETM.

SETM также формирует кандидатов "на лету", основываясь на преобразованиях базы данных. Чтобы использовать стандартную операцию объединения языка SQL для формирования кандидата, SETM отделяет формирование кандидата от их подсчета.

Неудобство алгоритмов AIS и SETM - излишнее генерирование и подсчет слишком многих кандидатов, которые в результате не оказываются часто встречающимися.

 

Для улучшения их работы был предложен алгоритм Apriori.

Работа данного алгоритма состоит из нескольких этапов, каждый из этапов состоит из следующих шагов:

- Формирование кандидатов - этап, на котором алгоритм, сканируя базу данных, создает множество i-элементных кандидатов (i - номер этапа).

- Подсчет кандидатов - этап, на котором вычисляется поддержка каждого i-элементного кандидата. Здесь же осуществляется отсечение кандидатов, поддержка которых меньше минимума, установленного пользователем (min_sup). Оставшиеся i-элементные наборы называем часто встречающимися.

 

Традиционные методы визуализации могут находить следующее применение:

· представлять пользователю информацию в наглядном виде;

· компактно описывать закономерности, присущие исходному набору данных;

· снижать размерность или сжимать информацию;

· восстанавливать пробелы в наборе данных;

· находить шумы и выбросы в наборе данных.

Методы визуализации, в зависимости от количества используемых измерений, принято классифицировать на две группы [22]:

· представление данных в одном, двух и трех измерениях - к этой группе методов относятся хорошо известные способы отображения информации, которые доступны для восприятия человеческим воображением. Практически любой современный инструмент Data Mining включает способы визуального представления из этой группы. Среди двухмерных и трехмерных средств наиболее широко известны линейные графики, линейные, столбиковые, круговые секторные и векторные диаграммы.;

· представление данных в четырех и более измерениях - представления информации в четырехмерном и более измерениях недоступны для человеческого восприятия. Однако разработаны специальные методы для возможности отображения и восприятия человеком такой информации.

Наиболее известные способы многомерного представления информации:

· параллельные координаты;

· "лица Чернова" - основная идея представления информации состоит в кодировании

значений различных переменных в характеристиках или чертах человеческого лица;

· лепестковые диаграммы.

8. Этапы процесса Data Mining: анализ предметной области; · постановка задачи; · подготовка данных; построение моделей;· проверка и оценка моделей;· выбор модели;· применение модели;· коррекция и обновление модели.

 




Поделиться с друзьями:


Дата добавления: 2015-03-31; Просмотров: 648; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.