КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Этапы автоматического анализа текста
Несмотря на широкое использование мультимедиа, текст остается одним из основных видов информации в большинстве электронных хранилищ. Разработка эффективных подходов к обработке текстов с целью фильтрации, формирования смыслового портрета, навигации по базе текстов является одним из наиболее актуальных направлений современных информационных технологий. Существующие подходы к анализу текстов можно разбить на два класса. 1) относятся простые, быстрые, не зависящие от языка и предметной области, но грубые механизмы анализа; чаще всего это подходы, использующие статистические методы. 2) формируют достаточно изощренные, дающие хороший результат, но сравнительно медленные подходы, зависящие от языка и предметной области; обычно они основаны на лингвистических методах. Эффективным можно считать такой подход, который сочетал бы в себе быстроту и независимость от языка алгоритмов первого класса с высоким качеством обработки второго. Предлагаемый подход к анализу текстовой информации реализован на основе однородной нейросетевой (а потому статистической) обработки информации, обладает достаточным быстродействием и не зависит от языка и предметной области, но при этом, в отличие от большинства алгоритмов обработки текстов, реализованных на основе статистического подхода, дает хорошие результаты. Так, по данным ведомственной экспертизы представленный подход, реализованный в системе TextAnalyst, признан лучшим в реализации одной из важных функций обработки текстов — построения рефератов — в сравнении с подходом, реализованным, например, на основе лингвистических алгоритмов норвежской компании CognIT [1]. Автоматический анализ текста (АА), операция, которая заключается в том, что из данного текста на естественном языке извлекается содержащаяся в этом тексте грамматическая и семантическая информация, выполняемая по некоторому алгоритму в соответствии с заранее разработанным описанием данного языка. Обратная операция называется автоматическим синтезом текста. АА подразделяется на три этапа: В алгоритме АА обычно различают 1)сведения о языке («грамматика») 2) сведения о самом процессе анализа («механизм», или собственно алгоритм АА). АА является необходимым этапом в разных видах автоматической обработки текстов: автоматического перевода, автоматического реферирования, информационного поиска и т. п. АА следует отличать от автоматического исследования текстов, при котором полностью (или почти полностью) отсутствуют сведения о языке текста и текст обрабатывается алгоритмом именно с целью построения описания языка.
Дата добавления: 2015-04-24; Просмотров: 3879; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |