КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Если существует предел
, то Применим к функциям f(x) и φ(x) теорему Коши для отрезка [x0;x], лежащего в окрестности точки x0, тогда , где с лежит между x0 и х.
При x→x0 величина с также стремится к х0; перейдем в предыдущем равенстве к пределу:
Так как , то . Поэтому (предел отношения двух бесконечно малых равен пределу отношения их производных, если последний существует) Правило Лопиталя, при ∞ / ∞. Пусть функции f(x) и φ(x) непрерывны и дифференцируемы в окрестности точки x0 (кроме точки x0), в этой окрестности
15. Если у=f(x) непрерывна на [a,b] и дифференцируема на этом отрезке, то у=f(x)-const, тогда и только тогда, когда f¢(x)=0 при "х'[a,b]. Если функция непрерывна, дифференцируема на (a,b) и внутри (a,b) сохраняет знак, то функция у=f(x) монотонна.
16. Достаточное условие существования экстремума. Пусть функция f(x,y) имеет непрерывные частные производные второго порядка в некоторой окрестности стационарной точки М0(x0,y0). Положим D= f¢¢xx(M0)f¢¢yy(M0) – (f¢¢xy(M0)2. тогда:
17. График ф-ии яв-ся выпуклым на некот промеж, если все его точки леж. ниже люб касат, провед к этой кривой. Вогнутый - наоборот. выпуклости (f''(x)<0), вогнутости (f''(x)>0) Точка перегиба – точка, отделяющ выпук часть непрер прямой от вогнутой части. Необходимое условие - чтобы f”(x1)=0 Достаточное условие - смена знака второй производной при переходе через эту точку.
18.. Асимптотой графика ф-ии y=f(x) называется прямая, обладающая тем свойством, что расстояние от точки (х, f(x)) до этой прямой стремится к 0 при неограниченном удалении точки графика от начала координат. Если для некоторого х0 имеет место предел f(x)=∞ при х→х0 то говорят, что х=х0 явл. вертикальн. асимптотой f(x). Вертикальные асимптоты следует искать в точках разрыва ф-ии или на концах её ООФ (а;в) если а и в конечные числа Если предел f(x)=b при x→∞ то говорят, что у=b явл. горизонтальной асимптотой f(x) Если предел f(x)/х=k при x→∞ (k≠0;k≠∞) и предел (f(x)-kx)=b, то y=kx+b является наклонной асимпт-й Наклонная асимптота как и горизонтальная может быть правосторонней или левосторонней 1 ООФ, ОЗФ 2 Непрерывность ф-ии 3 Нахождение асимптот 4 Экстремумы и интервалы монотонности 5 Интервалы выпуклости и т. перегиба 6 Чётность нечётность, периодичность 7 Т. пересечения с Ох и Оу
21. -Непосредственное интегрирование Метод интегрирования, при котором интеграл путем тождественных преобразований подынтегральной функции (или выражения) и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием. См. Таблица интегралов. [править]Подведение под знак дифференциала Данный метод эквивалентен методу замены переменной (см. далее): [править]Метод замены переменной (метод подстановки) Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой. Пусть требуется вычислить интеграл Сделаем подстановку где — функция, имеющая непрерывную производную. Тогда и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой: [править]Интегрирование выражений вида Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t. Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t. Если n и m чётные, то удобнее сделать подстановку tg x = t. [править]Примеры Вычислить: Пусть тогда и [править]Интегрирование по частям Основная статья: Интегрирование по частям Интегрирование по частям — применение следующей формулы для интегрирования: В частности, с помощью n -кратного применения этой формулы находится интеграл где — многочлен -ой степени. [править]Интегрирование рациональных дробей Основная статья: Разложение дробей при интегрировании Неопределенный интеграл от любой рациональной дроби на всяком промежутке, на котором знаменатель дроби не обращается в ноль, существует и выражается через элементарные функции, а именно он является алгебраической суммой суперпозиции рациональных дробей, арктангенсов и рациональных логарифмов. Сам метод заключается в разложении рациональной дроби на сумму простейших дробей. Всякую правильную рациональную дробь , знаменатель которой разложен на множители можно представить (и притом единственным образом) в виде следующей суммы простейших дробей: где — некоторые действительные коэффициенты, обычно вычисляемые с помощью метода неопределённых коэффициентов. [править]Примеры Вычислить: Разложим подынтегральное выражение на простейшие дроби: Сгруппируем слагаемые и приравняем коэффициенты при членах с одинаковыми степенями: Следовательно Тогда Теперь легко вычислить исходный интеграл 22. [править]Интегрирование по частям Основная статья: Интегрирование по частям Интегрирование по частям — применение следующей формулы для интегрирования: В частности, с помощью n -кратного применения этой формулы находится интеграл где — многочлен -ой степени.
Дата добавления: 2015-04-24; Просмотров: 384; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |