КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Протекают до конца
Условия, при которых реакции ионного обмена Правила написания уравнений реакций в ионном виде Записывают формулы веществ, вступивших в реакцию, ставят знак «равно» и записывают формулы образовавшихся веществ. Расставляют коэффициенты. Пользуясь таблицей растворимости, записывают в ионном виде формулы веществ, обозначенных в таблице растворимости буквой «Р» (хорошо растворимые в воде), исключение – гидроксид кальция, который, хотя и обозначен буквой «М», все же в водном растворе хорошо диссоциирует на ионы. Нужно помнить, что на ионы не разлагаются металлы, оксиды металлов и неметаллов, вода, газообразные вещества, нерастворимые в воде соединения, обозначенные в таблице растворимости буквой «Н». Формулы этих веществ записывают в молекулярном виде. Получают полное ионное уравнение. Сокращают одинаковые ионы до знака «равно» и после него в уравнении. Получают сокращенное ионное уравнение. 1. Если в результате реакции выделяется малодиссоциирующее вещество – вода. Молекулярное уравнение реакции щелочи с кислотой:
Неизменность степеней окисления элементов во всех веществах до и после реакции говорит о том, что реакции обмена не являются окислительно-восстановительными. Полное ионное уравнение реакции: K+ + OH– + H+ + Cl– = K+ + Cl– + H2O. Cокращенное ионное уравнение реакции: H+ + OH– = H2O. 2. Если в результате реакции выделяется нерастворимое в воде вещество. Молекулярное уравнение реакции растворимой соли со щелочью: CuCl2 + 2KOH = 2KCl + Cu(OH)2. Полное ионное уравнение реакции: Cu2+ + 2Cl– + 2K+ + 2OH– = 2K+ + 2Cl– + Cu(OH)2. Cокращенное ионное уравнение реакции: Cu2+ + 2OH– = Cu(OH)2. 3. Если в результате реакции выделяется газообразное вещество. Молекулярное уравнение реакции растворимой соли (сульфида) с кислотой: K2S + 2HCl = 2KCl + H2S. Полное ионное уравнение реакции: 2K+ + S2– + 2H+ + 2Cl– = 2K+ + 2Cl– + H2S. Cокращенное ионное уравнение реакции: S2– + 2H+ = H2S.
10) По химическим свойствам оксиды подразделяют на следующие типы: основные — им соответствуют основания; амфотерные — им соответствуют амфотерные гидроксиды, которые сочетают свойства оснований и кислот; кислотные — им соответствуют кислоты; несолеобразующие или безразличные— они не имеют своих гидроксидов и не вступают в реакции обмена (запомните их формулы: N2О, NO, CO, SiO и др.); вода — занимает особое положение, по своим свойствам она является одновременно и амфотерным, и несолёобразующим оксидом. Существуют соединения элементов с кислородом, которые не считаются оксидами. Например, пероксид водорода Н2О2; фторид кислорода OF2 — тоже не оксид. Оксидами же называются сложные вещества, состоящие из двух элементов, один из которых кислород, т.е. оксид - это соединение элемента с кислородом. Название оксидов образуется от названия элемента, входящего в состав оксида. Например, BaO - оксид бария. Если образующий оксид элемент имеет переменную валентность, то после названия элемента в скобках указывается его валентность римской цифрой. Например, FeO - оксид железа (I), Fe2О3 - оксид железа (III). Элементы, обладающие постоянной валентностью, образуют только основные, кислотные или амфотерные оксиды. Элементы с переменной валентностью могут образовывать различные оксиды. Все оксиды делятся на солеобразующие и несолеобразующие. Немногочисленные несолеобразующие оксиды не взаимодействуют ни с кислотами, ни с основаниями. К ним относятся оксид азота N2O (I), оксид азота NO (II). По своим химическим свойствам оксиды делятся на основные, кислотные и амфотерные. Основными называются оксиды, которые образуют соли при взаимодействии с кислотами или кислотными оксидами: CuO + H2SO4 = CuSO4 + H2O Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания: CaO + H2O = Ca(OH)2 Большинство основных оксидов с водой не взаимодействуют, но им также соответствуют основания, которые можно получить косвенным путем. Основные оксиды реагируют с кислотными оксидами, образуя соли: Na2O + SO3 = Na2SO4 Кислотными называются оксиды, которые образуют соли при взаимодействии с основаниями или основными оксидами. Кислотные оксиды также называются ангидридами кислот. Кислотными являются оксиды типичных неметаллов, а также оксиды ряда металлов в высших степенях окисления (B2O3; N2O5). Многие кислотные оксиды соединяются с водой, образуя кислоты: N2O3 + H2O = 2HNO2 SO3 + H2O = H2SO4 Не все ангидриды реагируют с водой, в этом случае соответствующие им кислоты добываются косвенным путем. Кислотные оксиды реагируют с основными оксидами с образованием соли: CO2 + CaO = CaCO3 Кислотные оксиды взаимодействуют с основаниями, образуя соль и воду: CO2 + Ba(ОН)2= BaCO3 + H2O Амфотерными называются оксиды, которые образуют соли при взаимодействии как с кислотами, так и с основаниями. Соединения этих оксидов с водой могут иметь кислотные и основные свойства одновременно, например - Al2O3, Cr2O3, MnO2; Fe2O3, ZnO. К примеру, амфотерный характер оксида цинка проявляется при взаимодействии его как с соляной кислотой, так и с гидроксидом натрия: ZnO + 2HCl = ZnCl2 + H2O ZnO + 2NaOH = Na2ZnO2 + H2O Так как далеко не все амфотерные оксиды расворимы в воде, то доказать амфотерность таких оксидов заметно сложнее. Например, оксид алюминия (III) в реакции сплавления его с дисульфатом калия проявляет основные свойства, а при сплавлении с гидроксидами кислотные: Al2O3 + 3K2S2O7 = 3K2SO4 + A12(SO4)3 Al2O3 + 2KOH = 2KAlO2 + H2O У различных амфотерных оксидов двойственность свойств может быть выражена в различной степени. Например, оксид цинка одинаково легко растворяется и в кислотах, и в щелочах, а оксид железа (III) - Fe2O3 - обладает преимущественно основными свойствами. Способы получения оксидов из простых веществ - это либо прямая реакция элемента с кислородом: 2Ca + O2 = 2CaO либо разложение сложных веществ: а) оксидов 4CrO3 = 2Cr2O3 + 3O2 б) гидроксидов Ca(OH)2 = CaO + H2O в) кислот H2CO3 = H2O + CO2 г) солей CaCO3 = CaO +CO2 А также взаимодействие кислот - окислителей с металлами и неметаллами: Cu + 4HNO3(конц) = Cu(NO3) 2 + 2NO2 + 2H2O
11) Кислота – это сложные вещества, состоящие из атомов водорода, способных замещаться на атомы металла, и кислотных остатков. С точки зрения теории электролитической диссоциации, кислота – это электролит, который при растворении в воде диссоциирует на катионы водорода и анион кислотного остатка. Кислоты классифицируют по таким признакам: а) по наличию или отсутствию кислорода в молекуле и б) по числу атомов водорода. По первому признаку кислоты делятся на кислородсодержащие и бескислородные (табл. 8-1).
Таблица 8-1. Классификация кислот по составу.
По количеству атомов водорода, способных замещаться на металл, все кислоты делятся на одноосновные (с одним атомом водорода), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н), как показано в табл. 8-2:
Таблица 8-2. Классификация кислот по числу атомов водорода.
** Термин "одноосновная кислота" возник потому, что для нейтрализации одной молекулы такой кислоты требуется "одно основание", т.е. одна молекула какого-либо простейшего основания типа NaOH или KOH: HNO3 + NaOH = NaNO3 + H2O HCl + KOH = KCl + H2O Двухосновная кислота требует для своей нейтрализации уже "два основания", а трехосновная – "три основания": H2SO4 + 2 NaOH = Na2SO4 + 2 H2O H3PO4 + 3 NaOH = Na3PO4 + 3 H2O Рассмотрим важнейшие химические свойства кислот. 1. Действие растворов кислот на индикаторы. Практически все кислоты (кроме кремниевой) хорошо растворимы в воде. Растворы кислот в воде изменяют окраску специальных веществ – индикаторов. По окраске индикаторов определяют присутствие кислоты. Индикатор лакмус окрашивается растворами кислот в красный цвет, индикатор метиловый оранжевый – тоже в красный цвет. Индикаторы представляют собой вещества сложного строения. В растворах оснований и в нейтральных растворах они имеют иную окраску, чем в растворах кислот. Об индикаторах мы более подробно расскажем в следующем параграфе на примере их реакций с основаниями. 2. Взаимодействие кислот с основаниями. Эта реакция, как вы уже знаете, называется реакцией нейтрализации. Кислота реагируют с основанием с образованием соли, в которой всегда в неизменном виде обнаруживается кислотный остаток. Вторым продуктом реакции нейтрализации обязательно является вода. Для реакций нейтрализации достаточно, чтобы хотя бы одно из реагирующих веществ было растворимо в воде. Поскольку практически все кислоты растворимы в воде, они вступают в реакции нейтрализации не только с растворимыми, но и с нерастворимыми основаниями. Исключением является кремниевая кислота, которая плохо растворима в воде и поэтому может реагировать только с растворимыми основаниями – такими как NaOH и KOH: H2SiO3 + 2 NaOH = Na2SiO3 + 2H2O 3. Взаимодействие кислот с основными оксидами. Поскольку основные оксиды – ближайшие родственники оснований – с ними кислоты также вступают в реакции нейтрализации: Как и в случае реакций с основаниями, с основными оксидами кислоты образуют соль и воду. Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации. Например, фосфорную кислоту используют для очистки железа от ржавчины (оксидов железа). Фосфорная кислота, убирая с поверхности металла его оксид, с самим железом реагирует очень медленно. Оксид железа превращается в растворимую соль FePO4, которую смывают водой вместе с остатками кислоты. 4. Взаимодействие кислот с металлами. Как мы видим из предыдущего примера, для взаимодействия кислот с металлом должны выполняться некоторые условия (в отличие от реакций кислот с основаниями и основными оксидами, которые идут практически всегда). Во-первых, металл должен быть достаточно активным (реакционноспособным) по отношению к кислотам. Например, золото, серебро, ртуть и некоторые другие металлы с кислотами не реагируют. Такие металлы как натрий, кальций, цинк – напротив – реагируют очень активно с выделением газообразного водорода и большого количества тепла. По реакционной способности в отношении кислот все металлы располагаются в ряд активности металлов (табл. 8-3). Слева находятся наиболее активные металлы, справа – неактивные. Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами Табл. 8-3. Ряд активности металлов.
Во-вторых, кислота должна быть достаточно сильной, чтобы реагировать даже с металлом из левой части табл. 8-3. Под силой кислоты понимают ее способность отдавать ионы водорода H+. Например, кислоты растений (яблочная, лимонная, щавелевая и т.д.) являются слабыми кислотами и очень медленно реагируют с такими металлами как цинк, хром, железо, никель, олово, свинец (хотя с основаниями и оксидами металлов они способны реагировать). С другой стороны, такие сильные кислоты как серная или соляная (хлороводородная) способны реагировать со всеми металлами из левой части табл. 8-3. В связи с этим существует еще одна классификация кислот – по силе. В таблице 8-4 в каждой из колонок сила кислот уменьшается сверху вниз.
Таблица 8-4. Классификация кислот на сильные и слабые кислоты.
** Следует помнить, что в реакциях кислот с металлами есть одно важное исключение. При взаимодействии металлов с азотной кислотой водород не выделяется. Это связано с тем, что азотная кислота содержит в своей молекуле сильный окислитель – азот в степени окисления +5. Поэтому с металлами в первую очередь реагирует более активный окислитель N+5, а не H+, как в других кислотах. Выделяющийся все же в каком-то количестве водород немедленно окисляется и не выделяется в виде газа. Это же наблюдается и для реакций концентрированной серной кислоты, в молекуле которой сера S+6 также выступает в роли главного окислителя. Состав продуктов в этих окислительно-восстановительных реакциях зависит от многих факторов: активности металла, концентрации кислоты, температуры. Например: Cu + 4 HNO3(конц.) =Cu(NO3)2 + 2 NO2 + 2 H2O 3 Cu + 8HNO3(разб.) = 3 Cu(NO3)2 + 2 NO + 4 H2O 8 K + 5 H2SO4(конц.) = 4 K2SO4 + H2S + 4 H2O 3 Zn + 4 H2SO4(конц.) = 3 ZnSO4 + S + 4 H2O Есть металлы, которые реагируют с разбавленными кислотами, но не реагирует с концентрированными (т.е. безводными) кислотами – серной кислотой и азотной кислотой. Эти металлы – Al, Fe, Cr, Ni и некоторые другие – при контакте с безводными кислотами сразу же покрываются продуктами окисления (пассивируются). Продукты окисления, образующие прочные пленки, могут растворяться в водных растворах кислот, но нерастворимы в кислотах концентрированных. 1. Бескислородные кислоты могут быть получены непосредственным синтезом из элементов, с последующим растворением полученного соединения в воде: H2 + Cl2 = 2HCl H2 + S = H2S. 2. Кислородсодержащие кислоты могут быть получены взаимодействием кислотных оксидов (ангидридов кислот) с водой: SO3 + H2O = H2SO4 N2O5 + H2O = 2HNO3 3. Как бескислородные, так и кислородсодержащие кислоты можно получить по реакции обмена между солями и другими кислотами: Na2SiO3 + H2SO4 = Na2SO4 + H2SiO3 AgNO3 + HCl = AgCl + HNO3
12) Основания - это сложные вещества, состоящие из атома металла, связанного с одной или несколькими гидроксогруппами-ОН. Общая формула: По номенклатуре основания называют гидроксидами: Формула Название Формула Название LiOH гидроксид лития Ca(OH)2 гидроксид кальция NaOH гидроксид натрия Cu(OH)2 гидроксид меди(II) KOH гидроксид калия Fe(OH)2 гидроксид железа(III)
К щелочам относят гидроксиды щелочных и щелочноземельных металлов (LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)2, Sr(OH)2, Ba(OH)2.Остальные - нерастворимые. К нерастворимым относят так называемые амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью-как кислоты. Получение оснований. Щелочи 1.Металл+вода 2Na+H2O=2NaOH+H2 Ba+2H2O=Ba(OH)2+H2 2.Оксид+вода Li2O+H2O=2LiOH CaO+H2O=Ca(OH)2 3.Электролиз растворов щелочных металлов 2NaCl+2H2O=2NaOH+Cl2+H2 Нерастворимые основания Соль+щелочь CuSO4+2NaOH=Cu(OH)2+Na2SO4 Химические свойства оснований.
Дата добавления: 2015-04-24; Просмотров: 608; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |