![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Атомная орбиталь 2 страница
[Сr(H2O)3F3] — трифторотриаквахром [Сo(NH3)3Cl(NO2)2] — динитрохлоротриамминкобальт [Pt(NH3)4Cl2]Cl2 — хлорид дихлоротетраамминплатины(IV) [Li(H2O)4]NO3 — нитрат тетрааквалития [править]Структура и стереохимия Строение комплексных соединений рассматривают на основе координационной теории, предложенной в 1893 г. швейцарским химиком Альфредом Вернером, лауреатом Нобелевской премии. Его научная деятельность проходила в Цюрихском университете. Ученый синтезировал много новых комплексных соединений, систематизировал ранее известные и вновь полученные комплексные соединения и разработал экспериментальные методы доказательства их строения. В соответствии с этой теорией в комплексных соединениях различают комплексообразователь, внешнюю и внутреннюю сферы. Комплексообразователем обычно является катион или нейтральный атом. Внутреннюю сферусоставляет определенное число ионов или нейтральных молекул, которые прочно связаны с комплексообразователем. Их называют лигандами. Число лигандов определяет координационное число (КЧ) комплексообразователя. Внутренняя сфера может иметь положительный, отрицательный или нулевой заряд. Остальные ионы, не разместившиеся во внутренней сфере, находятся на более далеком расстоянии от центрального иона, составляя внешную координационную сферу. Если заряд лигандов компенсирует заряд комплексообразователя, то такие комплексные соединения называют нейтральными или комплексами-неэлектролитами: они состоят только из комплексообразователя и лигандов внутренней сферы. Таким нейтральным комплексом является, например, [Pt(NH3)2Cl2]. Природа связи между центральным ионом (атомом) и лигандами может быть двоякой. С одной стороны, связь обусловлена силами электростатического притяжения. С другой — между центральным атомом и лигандами может образоваться связь по донорно-акцепторному механизму по аналогии с ионом аммония. Во многих комплексных соединениях связь между центральным ионом (атомом) и лигандами обусловлена как силами электростатического притяжения, так и связью, образующейся за счет неподеленных электронных пар комплексообразователя и свободных орбиталей лигандов. Комплексные соединения, имеющие внешнюю сферу, являются сильными электролитами и в водных растворах диссоциируют практически нацело на комплексный ион и ионы внешней сферы. При обменных реакциях комплексные ионы переходят из одних соединений в другие, не изменяя своего состава. Наиболее типичными комплексообразователями являются катионы d-элементов. Лигандами могут быть: а) полярные молекулы — NH3, Н2О, CO, NO; Для описания взаимосвязи пространственного строения комплексных соединений и их физико-химических свойства используются представления стереохимии. Стереохимический подход — удобный прием представления свойств вещества в части влияния того или иного фрагмента структуры вещества на свойство. Объекты стереохимии — комплексные соединения, органические вещества, высокомолекулярные синтетические и природные соединения. А. Вернер, один из основоположников координационной химии, приложил большие усилия к развитию неорганической стереохимии. Именно стереохимия является центральной в этой теории, до сих пор остающийся ориентиром в координационной химии. [править]Изомерия координационных соединений В статистическом аспекте стереохимии центральным оказывается явление изомерии координационных соединений. Свойство изомерии химических соединений было известно еще при разработке классической теории химического строения. Изомерия молекул открыта в 1823 г. Ю.Либихом, обнаружившим, что серебряная соль гремучей кислоты и изоцианат серебра имеют один и тот же элементный состав, но разные физические и химические свойства. Под изомерией понимают способность к разному взаимному расположению атомов и атомных фрагментов в соединениях одинакового общего состава, диктующую отличия в химических и физических свойствах соответствующих соединений — изомеров. В случае координационных соединений указанные различия могут быть связаны как со спецификой расположения лигандов во внутренней координационной сфере, так и с распределением лигандов между внутренней и внешними сферами. Изомерия прямо связана с наличием или отсутствием в соединении тех или иных элементов симметрии: поворотных осей, зеркально-поворотных осей, центра и плоскостей симметрии. Стереохимическая конфигурация характеризует относительное пространственное расположение атомов или групп атомов в молекуле химического соединения. Смысл этого термина зависит от конкретного пространственного расположения атомов в структуре комплекса. Его используют для описания фигуры или многогранника вместе с дополнительным определением, характеризующим специфику пространственного расположения атомов. Так, можно говорить о цис- или транс-конфигурации; D (d), L(l), DL (dl) — соответственно право-, левовращающая конфигурация, рацемат. Существуют изомеры двух типов: 1) соединения, в которых состав внутренней сферы и строение координированных лигандов идентичны (геометрические, оптические, конформационные, координационного положения); 2) соединения, для которых возможны различия в составе внутренней сферы и строении лигандов (ионизационные, гидратные, координационные, лигандные). [править] Пространственная (геометрическая) изомерия Этот вид изомерии вызван неодинаковым размещением лигандов во внутренней сфере относительно друг друга. Необходимым условием геометрической изомерии является наличие во внутренней координационной сфере не менее двух различных лигандов. Геометрическая изомерия проявляется преимущественно у комплексных соединений, имеющих октаэдрическое строение, строение плоского квадрата или квадратной пирамиды. С увеличением числа различных лигандов во внутренней сфере растет число геометрических изомеров. [править] Оптическая изомерия Оптическая изомерия связана со способностью некоторых комплексных соединений существовать в виде двух форм, не совмещаемых в трехмерном пространстве и являющихся зеркальным отображением друг друга, как левая рука и правая. Поэтому оптическую изомерию называют иногда еще зеркальной изомерией. Гидратная (сольватная) изомерия заключается в различном распределении молекул растворителя между внутренней и внешней сферами комплексного соединения, в различном характере химической связи молекул воды с комплексообразователем. Например: [Cr(H2O)6]Cl3 (фиолетовый), [Cr(H2O)5Cl]Cl2 ∙ H2O (светло-зеленый), [Cr(H2O)Cl2]Cl ∙ 2H2O (темно-зеленый). Ионизационная изомерия определяется различным распределением заряженных лигандов между внутренней и внешней сферами комплекса и характеризует способность координационных соединений с одним и тем же элементным составом давать в растворе разные ионы. Примеры соединений: [Co(NH3)5Br]SO4 (красно-фиолетовый), [Co(NH3)5SO4]Br (красный). Координационная изомерия связана с переходом лигандов от одного комплексообразователя к другому: [Co(NH3)6][Cr(CN)6] и [Cr(NH3)6][Co(CN)6]. [править]Электронные свойства [править] Окраска Окраска комплексных соединений зависит от типа лигандов и комплексообразователя. Из-за расщепления энергии d-орбиталей появляется возможность перехода электронов с подуровней dxy, dzy, dxz на вакантные подуровни с более высокой энергией dz2,dz2-y2 под действием поглощаемых квантов света. Эти явления можно наблюдать с помощью электронной спектроскопии. В зависимости от разности расщепленных уровней комплексы поглощаюткванты света определенных диапазонов длин волн, поэтому имеют соответствующую окраску. [править]Применение Комплексные соединения имеют важное значение для живых организмов, так гемоглобин крови образует комплекс с кислородом для доставки его к клеткам, хлорофилл находящийся в растениях является комплексом. Комплексные соединения находят широкое применение в различных отраслях промышленности. Химические методы извлечения металлов из руд связаны с образованием КС. Например, для отделения золота от породы руду обрабатывают раствором цианида натрия в присутствии кислорода. Метод извлечения золота из руд с помощью растворов цианидов был предложен в 1843 г. русским инженером П. Багратионом. Для получения чистых железа,никеля, кобальта используют термическое разложение карбонилов металлов. Эти соединения - летучие жидкости, легко разлагающиеся с выделением соответствующих металлов. Широкое применение комплексные соединения получили в аналитической химии в качестве индикаторов. Многие КС обладают каталитической активностью, поэтому их широко используют в неорганическом и органическом синтезах. Таким образом, с использованием комплексных соединений связана возможность получения многообразных химических продуктов: лаков, красок, металлов, фотоматериалов, катализаторов, надежных средств для переработки и консервирования пищи и т.д. Комплесные соединения цианидов имеют важное значение в гальванопластике, так как из обычной соли бывает невозможно получить настолько прочное покрытие как при использовании комплексов. 8 вопрос Приведенное уравнение выражает закон сохранения энергии (который называется также первым законом термодинамики), т.е. означает что сумма изменения внутренней энергии и совершенной системой (или над нею) работы равна сообщенной (или выделенной ею) теплоте. Так, если теплота сообщается газу в цилиндре, закрытом поршнем, то газ, во-первых, нагревается, т.е. его внутренняя энергия возрастает, а во-вторых, расширяется, т.е. производит работу подъема поршня А. При изохорном процессе (V = const), поскольку изменения объема системы не происходит, А = 0. Тогда переходу системы из состояния 1 в состояние 2 отвечает равенство: При изобарном процессе (p = const) тепловой эффект qр равен:
Введем обозначение Тогда qp = H2 – H1 = DH. Величину Н называют энтальпией. Энтальпию можно рассматривать как энергию расширенной системы. Таким образом, если при изохорном процессе энергетический эффект реакции равен изменению внутренней энергии системы Химические и физические изменения в системе, как правило, сопровождаются выделением и поглощением теплоты. Наибольшую теплоту, которую можно получить при химическом процессе при данной температуре, называют тепловым эффектом процесса. Процессы в химии, при которых теплота выделяется, называются экзотермическими, а процессы, при которых теплота поглощается, - эндотермическими. Тепловые эффекты экзотермических реакций в термохимии принято считать положительными, а эндотермических функций – отрицательными. В отличие от термохимии в химической термодинамике, наоборот, положительные значения принимаются для тепла (Q), поглощенного системой. С целью согласовать систему знаков, будем тепловой эффект процесса обозначать через Q и считать, что (В химической термодинамике: q – поглощаемая энергия - положительна; q - отдаваемая (излучаемая) энергия – отрицательна.)
изменение объема определяется равенством где VA, VB, …, VD, VE… - молярные объемы веществ A, B, …, D, E…; åVпрод – сумма молярных объемов продуктов реакции; åVисх – сумма молярных объемов исходных веществ. Следует отметить, что подавляющее большинство химических реакций происходит при постоянном давлении. Поэтому таким реакциям в дальнейшем будет уделено наибольшее внимание. Тепловые эффекты реакций определяют как экспериментально, так и с помощью термохимических расчетов. Абсолютные значения внутренней энергии и энтальпии определить невозможно. Однако для термохимических расчетов это несущественно, т.к. здесь представляет интерес энергетический эффект процесса, т.е. изменение состояния системы – изменение значений U и H (DU и DН). Уравнения химических реакций с указанием тепловых эффектов называют термохимическими уравнениями.
В термохимических уравнениях указывается также агрегатное состояние и полиморфная модификация реагирующих и образующихся веществ: г – газовое, ж – жидкое, к – кристаллическое и т.д. Стандартные энтальпии образования простых веществ, устойчивых в стандартных условиях (газообразный кислород, жидкий бром, кристалллический иод, ромбическая сера, графит и т.д.), принимают равными нулю. Частицам (атомам, ионам) присуще стремление к беспорядочному движению, поэтому система стремится перейти из более упорядоченного состояния в менее упорядоченное. Так, если, например, баллон с газом соединить с сосудом, то газ из баллона будет распределяться по всему объему сосуда. При этом система из более упорядоченного состояния (с меньшим беспорядком) переходит в состояние менее упорядоченное (с большим беспорядком). Количественной мерой беспорядка является энтропия S. Или другими словами: энтропия – мера неупорядоченности системы. Ее представляют как логарифмическое выражение вероятности существования вещества или различных его форм:
Иными словами, самопроизвольно протекают реакции, если энергия Гиббса в исходном состоянии системы больше, чем в конечном. Ориентировочно за величину, определяющую направленность процесса, принимают значение 41,8 кДж/моль. Если для реакции расчетом получено Если Если для веществ по расчету получено
Теплотворная способность топлива - количество теплоты, выделяемое при сжигании 1 кг. твердого или 1 куб.м. газообразного топлива. Теплотворность каждого вида топлива зависит: Теплотворная способность топлива Качество топлива характеризуется его теплотворной способностью Q и измеряется количеством тепла, выделяющегося при полном сгорании 1 кг твердого или жидкого или I нормального кубического метра (1 нм3)1 газообразного топлива. Для твердого и жидкого топлива эта величина имеет размерность ккал1кг, для газообразного — ккал/нм3.Теплотворная способность рабочей массы топлива обозначается: <?р ккал/кг — для твердого и жидкого топлива и Qp ккал1нм3 — для газообразного.Принято считать, что если теплотворная способность топлива учитывает, кроме тепла, выделившегося при его сгорании, также и тепло, полученное при преобразовании продуктов горения в воду при 100°С, то такая теплотворность называется высшей (QP). Если при определении теплотворной способности топлива было учтено тепло, расходованное на испарение влаги, такая теплотворность называется низшей (Qp). При практических расчетах пользуются последней. Теплотворная способность твердого и жидкого топлива определяется либо опытным путем, либо расчетным по формуле Д. И. Менделеева: Qp = 81Ср + 300НР — 26(0? — SP) ККАЛ/КГ; Qp = 81Ср + 300НР — 26(Ор — Sp) — 6(9Нр +WP) ККАЛ/КГ Теплотворная способность газообразного топлива определяется по формулам, полученным методом суммирования произведений тепловых эффектов горения газов на их процентное содержание: QB = 30.5СО + 30,5Н2 + 95,ЗСН4 + 152,5С2Н4 + 4- 60,0H2S ККАЛ/НМ3; Q„ = 30.5СО + 25,8Н2 + 85,9СН4 + 143,0С2Н4 + 4- 55,2H2S ККАЛ/НМ3. Для сравнения тепловой ценности различных видов топлива применяется общая единица измерения—так называемое условнее топливо, теплотворная способность которого 7000 ккал/кг. Для перевода любого топлива в условное необходимо действительную теплотворную способность разделить на 7000 ккал/кг. Полученное отношение называется калорийным эквивалентом. Естественно, что чем больше калорийный эквивалент топлива, тем оно ценнее.Теплотворная способность и калорийные эквиваленты некоторых наиболее распространенных видов топлива приведены в табл. у. Сжигание топлива и использование тепла отходящих газовТеплотворная способность и калорийные эквиваленты некоторых видов топлива Горение топлива начинается только в том случав,- когда температура в топливосжигающем устройстве доведена до температуры воспламенения. Последняя величина переменная и зависит от вида топлива и условий, в которых совершается процесс горения.Горение топлива считается полным, если в продуктах горения произошло окисление горючих составляющих до ССЬ, ШО, SO2 и -при этом отсутствует свободный кислород.Зная состав топлива, можно подсчитать по формулам, приведенным в специальной литературе, теоретическое количество воздуха, необходимое для полного его сжигания. Так как практически нельзя достичь равномерного смешения воздуха с горючими составляющими топлива, то для обеспечения полного его сгорания необходимо подвести большее количество возудха по сравнению с теоретически необходимым.Отношение количества практически подведенного воздуха 1пр к количеству теоретически необходимому LTeop называется коэффициентом" избытка воздуха: Величина коэффициента избытка воздуха колеблется в пределах от 1,03 до 1,7. Нижний предел относится к газообразному и жидкому топливу, верхний — к твердому топливу. Следует помнить, что увеличение избытка воздуха вызывает дополнительный расход тепла для его нагрева, а также увеличение количества отходящих продуктов горения, которые уносят большое количество тепла в атмосферу и тем самым снижают температуру нагревательной среды печи. Поэтому необходимо всегда стремиться к полному сжиганию топлива при минимальном коэффициенте избытка воздуха. Критерием полноты горения служит цвет пламени. При недостатке воздуха пламя длинное, красного цвета с черными прожилками. Большой недостаток воздуха вызывает неполное сгорание топлива и появление черного дыма.При избытке воздуха получается короткое, острое (колючее) пламя с ярко светящимися язычками. Такое пламя нагревает маталл неравномерно, вызывает местный его перегрев и даже оплавление. При этом увеличивается расход топлива, угар металла и вместе с тем снижается температура в печи. Пламя молочно-белого цвета, без ярких языков в топливо-сжигающем устройстве является признаком оптимального количества воздуха 12 вопрос Скорость химической реакции (v) характеризуется изменением концентрации реагирующих веществ (моль/л или моль/см3) в единицу времени (сек., мин., ч.). Для гомогенной (однородной) системы скорость химической реакции измеряется количеством веществ, вступивших в реакцию или образовавшихся в результате реакции за единицу времени в единице объема системы. Для гетерогенной системы скорость химической реакции измеряется количеством веществ, вступивших в реакцию или образовавшихся в результате реакции за единицу времени на единице поверхности раздела фаз.
Дата добавления: 2015-04-24; Просмотров: 705; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |