Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вопрос 24




Силовые линии магнитного поля являются замкнутыми кривыми, поэтому картины силовых линий магнитного поля напоминают линии тока жидкости, движущейся с завихрениями. Для математического описания таких полей удобно использовать понятие циркуляции вектора.

Точнее следует сказать, что знание циркуляции необходимо для описания любого векторного поля: напомним, любое векторное поле определяется однозначно, если известны теоремы о потоке и циркуляции векторов этого поля. Другое дело, что в электростатическом поле циркуляция вектора по любому контуру равна нулю, поэтому электростатическое поле является потенциальным и для него оказывается возможным ввести такую важную физическую характеристику как потенциал поля. Для магнитного поля циркуляция не имеет явного физического смысла, а является весьма полезной вспомогательной математической величиной.

Определение циркуляции вектора магнитной индукции, аналогично определению циркуляции любого векторного поля.

Рассмотрим произвольную замкнутую линию (не обязательно, чтобы это была силовая линия). Выделим на этой линии малый участок, определяемый вектором (рис. 50). Пусть вектор индукции магнитного поля на этом участке равен , вычислим скалярное произведение этих векторов

,

где α - угол между вектором индукции и касательным вектором к выбранной линии (он совпадает с выделенным малым участком ). Далее разобьем всю замкнутую линию (Рис. 50) на малые участки , на каждом из которых вычислим скалярное произведение , и просуммируем [1] их по всем участкам замкнутой линии (контура)

. (1)

Построенная таким образом, математическая конструкция называется циркуляцией вектора магнитной индукции по заданному контуру L. Ее величина может быть как положительной, так и отрицательной, ее знак определяется произвольным выбором направления обхода контура, но, как обычно, положительным принимается направление обхода против часовой стрелки.

Понятно, что циркуляция магнитного поля может отличаться от нуля. Например, если в качестве произвольного контура выбрать замкнутую силовую линию, то при ее обходе на всех участках вектор индукции будет совпадать по направлению с направлением касательной, как было сказано ранее, «все время будем плыть по течению».

Теперь нам необходимо установить теорему, позволяющую установить циркуляцию вектора индукции. Отметим, что эта теорема является прямым следствием закона Био-Саварра-Лапласа, можно сказать, иной математической формулировкой этого физического закона. Не будем заниматься строгим доказательством теоремы, а проиллюстрируем ее простым примером.

Пусть магнитное поле создается длинным прямым проводником, по которому протекает электрический ток силой I. Индукцию такого поля мы рассчитали: силовые линии являются концентрическим окружностями с центрами на проводнике (Рис. 51). Легко подсчитать циркуляцию вектора индукции (1) по контуру, совпадающему с одной из силовых линий (например, радиуса r). Действительно, на любом участке этого контура вектор индукции направлен по касательной (поэтому все α i = 0), а модуль вектора индукции постоянен и равен , поэтому суммирование в формуле (1) сводится к вычислению длин малых отрезков окружности (после недолгих размышлений можно сообразить, что она равна длине окружности), поэтому для данного контура

. (2)

 

Таким образом, циркуляция по выбранному контуру оказалась равной произведению силы тока на магнитную постоянную, причем не зависимо от радиуса выбранной окружности. Такой красивый результат не может быть случайным – доказано, что такое же значение циркуляции получится для любого контура, охватывающего проводник с током, причем не обязательно прямой. А что будет в том случае, если контур не охватывает проводник с током? В этом случае циркуляция будет равна нулю. Очень просто это доказать, для контура, показанного на рис. 52 (проделайте это самостоятельно).

Так как для вектора магнитной индукции справедлив принцип суперпозиции, а циркуляция линейно выражается линейно через индукцию поля, по принцип суперпозиции также справедлив и для циркуляции магнитного поля.

Обобщая все эти положения, дадим окончательную формулировку теоремы о циркуляции: циркуляция вектора магнитной индукции по любому контуру равна сумме токов, пересекающих контур, умноженной на магнитную постоянную

. (3)

 

Сумма токов, пересекающих контур , понимается в алгебраическом смысле, то есть токи могут быть положительными, так и отрицательными. Сила тока считается положительной, если его направление и направление обхода образуют правый винт (Рис. 53). Так же как и поток, циркуляция является интегральной (не точечной) характеристикой магнитного поля – из того, что циркуляция по какому-то контуру равна нулю, не следует, что магнитное поле отсутствует – может контур не охватывает ни один ток, или их сумма равна нулю. Токи, не пересекающие контур, так же создают магнитное поле, но циркуляция этого поля по такому контуру равна нулю.

Наконец, уточним, что значит «ток пересекает контур», особенно, если контур не является плоским. Контур это замкнутая линия, поэтому приведенное выражение следует понимать, как ток пересекает любую поверхность (Рис. 54), опирающуюся на контур (или еще говорят «поверхность, натянутую на контур»). Легко доказать, что эта сумма токов, не зависит от выбора поверхности, натянутой на данный контур: из закона сохранения электрического заряда следует, что в статическом случае (когда все токи и все заряды не изменяются с течением времени) сумма токов, пересекающих любую замкнутую поверхность, равна нулю («сколько втекает, столько же вытекает»).

 

Вопрос 25. Соленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на сердечник. Тороид можно рассматривать как длинный соленоид, свернутый в кольцо (рис. 4.1).

Рис. 4.1. Магнитное поле соленоида

Длина соленоида l содержит N витков и по нему протекает ток I. Считаем соленоид бесконечно длинным. Эксперимент показал, что внутри соленоида поле однородно, а вне соленоида не однородно и очень слабое (можно считать, равным нулю).

Циркуляция вектора В по замкнутому контуру, совпадающему с одной из линий магнитной индукции, охватывающему все N витков, согласно (4.12) равна:

. (4.14)

Интеграл можно представить в виде суммы двух интегралов: по внутренней части контура: и по внешней: , тогда из (4.14) получим:

, (4.15)

или , (4.16)

где В – индукция магнитного поля внутри соленоида; – число витков на единицу длины соленоида.

Магнитное поле внутри тороида, так же, как в соленоиде, однородно, сосредоточено внутри; вне тороида магнитное поле, создаваемое круговыми токами тороида, равно нулю. Величина магнитного поля в тороиде определяется выражением (4.16), причем длина тороида l берется по средней длине тороида (среднему диаметру).

Отметим любопытный факт. Во всех учебниках по физике остался не отмеченным факт существования у соленоида и тороида второго магнитного поля, которое появляется из-за того, что, например, в соленоиде по отношению к средней линии соленоида витки направлены не точно перпендикулярно, а под углом меньше 90°. Это приводит к появлению тока (эффективного, но равного току I, протекающему через соленоид), вдоль соленоида (рис. 4.2).

Рис. 4.2. Второе магнитное поле соленоида

То есть соленоид создает дополнительное магнитное поле, такое же, как и прямолинейный бесконечно длинный проводник с током. Точно так же и для тороида: вдоль средней линии протекает эффективный ток I.
У тороида второе магнитное поле эквивалентно магнитному полю витка с током (рис.4.3). Диаметр этого витка равен диаметру тороида (его средней линии), а магнитное поле тороида (R – радиус тороида).

Рис. 4.3. Второе магнитное поле тороида

Вопрос 26. Теорема Гаусса для магнитной индукции

Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

.

Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является вихревым.

 

Вопрос 28. Электромагни́тная инду́кция. При изменении магнитного потока, пронизывающего замкнутый контур, в нем возникает электрический ток. Это явление было названо электромагнитной индукцией («индукция» означает «наведение»).

Электромагнитная индукция была открыта Майклом Фарадеем в 1831 году. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина ЭДС не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток вызванный этой ЭДС называется индукционным током.

Согласно закону электромагнитной индукции Фарадея (в системе СИ):

где — электродвижущая сила, действующая вдоль произвольно выбранного контура,

ΦB — магнитный поток через поверхность, натянутую на этот контур.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

где — электродвижущая сила, N — число витков,

ΦB — магнитный поток через один виток.

Векторная форма

В дифференциальной форме закон Фарадея можно записать в следующем виде:

(в системе СИ)

и

(в системе СГС).

или с помощью простейшей эквивалентной формулы:

Здесь — напряжённость электрического поля, — магнитная индукция, C — произвольная площадка, — её граница.

Закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля.

 

Вопрос 29. Если плоская рамка площади S равномерно вращается с частотой ν оборотов в секунду в однородном магнитном поле с индукцией то магнитный поток Φ, пронизывающий рамку периодически изменяется во времени:

Φ (t) = BS cos (2πνt).

В соответствии с законом электромагнитной индукции Фарадея на концах рамки появится переменное напряжение:

инд = 2πνBS sin (2πνt).

Амплитуда этого напряжения пропорциональна скорости вращения рамки. Такая рамка, вращающаяся в магнитном поле, является моделью генератора переменного тока.

 

Индуктивность — физическая величина, характеризующая магнитные свойства электрической цепи.

Если в проводящем контуре течёт ток, то ток создаёт магнитное поле. Величина магнитного потока, пронизывающего контур, связана с величиной тока следующим образом: Φ = LI.

В случае катушки состоящей из N витков: Ψ = NLI,

где L — индуктивность катушки, — сумма магнитных потоков через все витки. Ψ называют потокосцеплением или полным магнитным потоком. Если поток, пронизывающий каждый из витков одинаков, то Ψ = NΦ.

Коэффициент пропорциональности L называется коэффициентом самоиндукции контура или индуктивностью.

В системе единиц СИ индуктивность измеряется в генри, сокращенно Гн, в системе СГС — в сантиметрах (1 Гн = 109 см)

Символ L, используемый для обозначения индуктивности, был взят в честь Ленца Эмилия Христиановича (Heinrich Friedrich Emil Lenz). Единица измерения индуктивности названа в честь Джозефа Генри (Joseph Henry). Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока:

.

При заданной силе тока индуктивность определяет энергию магнитного поля тока: .

Практически участки цепи со значительной индуктивностью выполняют в виде катушек индуктивности.

 

Свойства индуктивности

Индуктивность всегда положительна;

Индуктивность зависит только от геометрических свойств контура

 

Индуктивность соленоида

Соленоид — длинная, тонкая катушка, то есть катушка, длина которой намного больше, чем её диаметр. При этих условиях и без использования магнитного материала плотность магнитного потока B в пределах катушки является фактически постоянной и равна

B = μ0Ni / l,

где μ0 − проницаемость вакуума, N − число витков, i − ток и l − длина катушки. Пренебрегая краевыми эффектами на концах соленоида, получим, что потокосцепление через катушку равно плотности потока B, умноженному на площадь поперечного сечения S и число витков N:

Отсюда следует формула для индуктивности соленоида

Самоиндукция — явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока.

При изменении тока в контуре меняется поток магнитной индукции через поверхность, ограниченную этим контуром, изменение потока магнитной индукции приводит к возбуждению ЭДС самоиндукции. Направление ЭДС оказывается таким, что при увеличении тока в цепи эдс препятствует возрастанию тока, а при уменьшении тока — убыванию.

Величина ЭДС пропорциональна скорости изменения силы тока I и индуктивности контура L:

.

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом величина ЭДС самоиндукции может значительно превышать ЭДС источника. Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение самоиндукции при напряжении питающей батареи 12В составляет 7-25кВ.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 409; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.045 сек.