КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основные свойства определенного интеграла. Рассмотрим свойства определенного интеграла
Рассмотрим свойства определенного интеграла. 1. Если нижний и верхний пределы интегрирования равны (a=b), то интеграл равен нулю: Это свойство следует из определения интеграла.
2. Если f(x)=1, то Действительно, так как f(x)=1, то 3. При перестановке пределов интегрирования определенный интеграл меняет знак на противоположный: 4. Постоянный множитель можно выносить за знак определенного интеграла: R. 5. Определенный интеграл от алгебраической суммы конечного числа интегрируемых на [a; b] функций f1(x), f2(x), …, fn(x) равен алгебраической сумме определенных интегралов от слагаемых: 6 (аддитивность определенного интеграла). Если существует интегралы и то существует также интеграл и для любых чисел a, b, c; 7. Если f(x) ≥ 0 [a; b], то a < b. 8 (определенность определенного интеграла). Если интегрируемые функции f(x) и φ(x) удовлетворяют неравенству f(x) ≥ φ(x) [a; b], то a >b. 9 (об оценке определенного интеграла). Если m и М – соответственно нименьшее и наибольшее значения функции f(x), непрерывной на отрезке [a; b], то a < b. 10 (теорема о среднем). Если функция f(x) непрерывна на отрезке [a; b], то существует такая точка [a; b], что т. е. определенный интеграл от переменной функции равен произведению значения подынтегральной функции в некоторой промежуточной точке ξ отрезка интегрирования [a; b] и длины b-a этого отрезка.
Дата добавления: 2015-04-24; Просмотров: 617; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |