Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Замена переменной и интегрирования по частям в определенном интеграле




Замена переменной в определенном интеграле. Этот метод, как и в случае неопределенного интеграла, позволяет упростить вычисления, т. е. привести подынтегральное выражение к соответствующей табличной форме. Применение замены переменной в определенном интеграле базируется на следующей теореме.

Теорема. Если функция f(x) непрерывная на отрезке [a; b], а функция x=φ(t) непрерывно дифференцируема на отрезке [t1; t2], причем φ([t1; t2])=[a; b] и φ(t1)=a, φ(t2)=b, то справедлива формула:

- (10)

Интегрирование по частям в определенном интеграле. Пусть u(x) и v(x) – дифференцируемые на отрезке [a; b] функции переменной х. Тогда d(uv)=udv+vdu. Проинтегрируем обе части последнего равенства на отрезке [a; b]:

- (11)

С другой стороны, по формуле Ньютона-Лейбница

Следовательно, формула (11) принимает вид:

- (12)

Формула (12) называется формулой интегрирования по частям в определенном интеграле.

 





Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 9690; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.