Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Фишера формулы




(проекции Фишера), способ изображения на плоскости пространств. структур орг. соед., имеющих один или неск. хиральных центров. При проектировании молекулы на плоскость (рис.) асимметрич. атом обычно опускают, сохраняя лишь перекрещивающиеся линии и символы заместителей; при этом заместители, находящиеся перед плоскостью, располагают справа и слева, а за плоскостью - вверху и внизу (пунктирная линия).

Ф-лы Фишера для молекулы с одним асимметрич. атомом (I), а также схема построения такой ф-лы для соединений с двумя асимметрич. атомами (П) ХОУОРСА ФОРМУЛЫ

ХОУОРСА ФОРМУЛЫ

(Хеуорса ф-лы), изображение на плоскости пространств. структур циклич. соед. При построении X. ф. цикл условно считают плоским (на самом деле молекула м. б. в конформации кресла или ванны) и проецируют на плоскость под нек-рым углом; при этом ближняя к наблюдателю часть кольца на чертеже располагается снизу и обычно выделяется более жирной линией (рис.). В моносахаридах кислородный атом цикла располагают обычно на наиб. удалении от наблюдателя (в случае пиранозного цикла - справа).

Формулы Фишера (а) и Хоуорса (б)дам моносахаридов - -D-глюкопиранозы (I) и -L-галактофуранозы (II).

Атомы или группы атомов, изображаемые в ф-лах Фишера слева и справа, в X. ф. располагаются соотв. над и под плоскостью цикла. Боковые цепи при атоме С-5 в пиранозах или при С-4 в фуранозах изображают над плоскостью цикла при D-конфигурации атома углерода и под плоскостью - при L-конфигурации (см. Номенклатура стереохимическая).
Предложены У. Хоуорсом (Хеуорсом) в 1926.

55. Соединения с гидроксильной группой.

Гидроксильная группа (гидроксил) — функциональная группа OH органических и неорганических соединений, в которой атомы водорода и кислорода связаны ковалентной связью. В органической химии носит также название «спиртовой группы».

Фенолами называют производные ароматических углеводородов, молекулы которых содержат одну или несколько гидроксильных групп, непосредственно соединенных с бензольным кольцом.

Названия фенолов составляют с учетом того, что для родоначальной структуры по правилам ИЮПАК сохранено тривиальное название "фенол". Нумерацию атомов углерода бензольного кольца начинают от атома, непосредственно связанного с гидроксильной группой (если она является старшей функцией), и про­должают в такой последовательности, чтобы имеющиеся замес­тители получили наименьшие номера.

Простейший представитель этого класса — собственно фенол, С6Н5ОН.

фенол

Строение фенола. Одна из двух неподеленных электронных пар атома кислорода втягивается в -электронную систему бен­зольного кольца (+M-ЭФФЕКТ группы ОН). Это приводит к двум эффектам: а) увеличивается электронная плотность в бензольном кольце, причем максимумы электронной плотности находятся в орто- и пара-положениях по отношению к группе ОН; б) элек­тронная плотность на атоме кислорода, напротив, уменьшается, что приводит к ослаблению связи О―Н. Первый эффект прояв­ляется в высокой активности фенола в реакциях электрофильного замещения, а второй - в повышенной кислотности фенола по сравнению с предельными спиртами.

Монозамещенные производные фенола, например метилфенол (крезол), могут существовать в виде трех структурных изомеров — орто-, мета- и пара-крезолов:

Физические свойства. Фенолы в большинстве своем — кри­сталлические вещества (мета-крезол — жидкость) при комнат­ной температуре. Они обладают характерным запахом, довольно плохо растворимы в холодной воде, но хорошо - в горячей и особенно в водных растворах щелочей. Фенолы образуют прочные водородные связи и имеют довольно высокие температуры кипения и плавления. Так, собственно фенол представляет собой бесцветные кристаллы с tпл = 41 °С и tкип =182 °С. С течением времени кристаллы краснеют и темнеют.

56. Пятичленные гетероциклические соединения.

Пятичленные гетероциклы — органические циклические соединения, в состав которого входит как минимум один гетероатом.

Наиболее известные представители:

Представитель Структурная формула Родственные соединения
Фуран Фурфурол, Пирослизевая кислота, Кумпарон, Изобензфуран, Тетрагидрофуран, 1,3-диоксолан
Тиофен Тионафтен, Тиофтен, Тетрагидротиофен, Тиолан, Тиоландиоксид, Биотин
Пиррол Индол, Оксиндол, Индоксил, Изатин, Карбазол, Пирролидин, 2-пирролидон, N-метилпирролидон, Пролин
Оксазол Бензоксазол, 2-оксазолин
Изоксазол  

57. Спиртами называют алифатические соединения, содержащие гидроксильную группу (алканолы, алкенолы, алкинолы); гидроксиарены или ароматические гидроксипроизводные называются фенолами. Название спирта образуется прибавлением суффикса -ол к названию соответствующего углеводорода или на основе углеводородного радикала. В зависимости от строения углеводородного радикала различают спирты:

первичные:

R = CH2–OH   R = H   R = CH3   R = C6H5   R = CH2–CH=CH2
    метанол   этанол   бензиловый спирт бензилол   3-бутен-1-ол

вторичные:

    R1 = R2 = CH3
    изопропиловый спирт изопропанол

третичные:

    R1 = R2 = R3 = CH3   R1 = R2 = C6H5, R3 = CH3
    трет-бутанол   дифенилметилкарбинол

Одноатомные фенолы:

     
фенол   α-нафтол

Фенолы характеризуются более сильными кислотными свойствами, чем спирты, последние в водных растворах не образуют карбониевые ионы AIk – O, что связано с меньшим поляризующим действием (электроакцепторными свойствами акильных радикалов по сравнению с ароматическими).

Спирты и фенолы тем не менее легко образуют водородные связи, поэтому все спирты и фенолы имеют более высокие температуры кипения, чем соответствующие углеводороды.

Если углеводородный радикал не обладает ярко выраженными гидрофобными свойствами, то эти спирты хорошо растворяются в воде. Водородная связь обусловливает способность спиртов переходить при отвердении в стеклообразное, а не кристаллическое состояние.

 

Соединения с двумя и более гидроксильными группами называются многоатомными спиртами и фенолами:

     
1,2-этандиол (гликоль)   1,2,3-пропан-триол (глицерин)

 

         
1,2-бензолдиол (пирокатехин)   1,3-бензолдиол (резорцин)   1,4-бензолдиол (гидрохинон)

 

         
1,2,3-бензолтриол (пирогаллол)   1,2,4-бензолтриол (гидроксигидрохинон)   1,3,5-бензолтриол (флюроглюцин)

58. Кислоты и основания по Льюису.

Дж. Льюисом была предложена более общая теория кислот и оснований.

Основания Льюиса – это доноры пары электронов (спирты, алкоголят-анионы, простые эфиры, амины и т.д.)

Кислоты Льюиса – это акцепторы пары электронов, т.е. соединения, имеющие вакантную орбиталь (ион водорода и катионы металлов: H+, Ag+, Na+, Fe2+; галогениды элементов второго и третьего периодов BF3, AlCl3, FeCl3, ZnCl2; галогены; соединения олова и серы: SnCl4, SO3).

Таким образом, основания Бренстеда и Льюиса – это одни и те же частицы. Однако основность по Бренстеду есть способность присоединять только протон, в то время как основность по Льюису – понятие более широкое и означает способность к взаимодействию с любой частицей, имеющей низколежащую свободную орбиталь.

Кислотно-основное взаимодействие по Льюису есть доноро-акцепторное взаимодействие и любую гетеролитическую реакцию можно представить как взаимодействие кислоты и основания Льюиса:

Единой шкалы для сравнения силы кислот и оснований Льюиса не существует, так как их относительная сила будет зависеть от того, какое вещество взято за стандарт (для кислот и оснований Бренстеда таким стандартом является вода). Для оценки легкости протекания кислотно-основного взаимодействия по Льюису Р. Пирсоном была предложена качественная теория “жестких” и “мягких” кислот и оснований.

Жесткие основания обладают высокой электроотрицательностью и низкой поляризуемостью. Они трудно окисляются. Их высшие занятые молекулярные орбитали (ВЗМО) имеют низкую энергию.

Мягкие основания имеют низкую электроотрицательность и высокую поляризуемость. Они легко окисляются. Их высшие занятые молекулярные орбитали (ВЗМО) имеют высокую энергию.

Жесткие кислоты имеют высокую электроотрицательность и низкую поляризуемость. Они трудно восстанавливаются. Их низшие свободные молекулярные орбитали (НСМО) имеют низкую энергию.

Мягкие кислоты обладают низкой электроотрицательностью и высокой поляризуемостью. Они легко восстанавливаются. Их низшие свободные молекулярные орбитали (НСМО) имеют высокую энергию.

Самая жесткая кислота - Н+, самая мягкая – СН3Hg+. Наиболее жесткие основания – F- и OH-, наиболее мягкие – I- и Н-.

59.. Простые эфиры.

Простые эфиры — органические вещества, имеющие формулу R-O-R1, где R и R1 — углеводородные радикалы. Следует, однако, учитывать, что такая группа может входить в состав других функциональных групп соединений, не являющихся простыми эфирами Способы получения]

  • По Вильямсону

В лабораторных условиях эфиры получают по Вильямсону взаимодействием галогенопроизводных, способных вступать в реакцию Sn2 и алкоксид- и феноксид-ионами. Реакция протекает гладко с галогенметаном и первичными галогеналканами. В случае вторичных галогеналканов реакция может быть осложнена побочной реакцией элиминирования.

Физические свойства

Простые эфиры — подвижные легкокипящие жидкости, малорастворимые в воде, очень легко воспламеняющиеся. Проявляют слабоосновные свойства (присоединяют протон по атому O).

Реакции

Простые эфиры образуют перекисные соединения под действием света:

Вследствие этого при перегонке простых эфиров в лабораторных условиях запрещается перегонять их досуха, поскольку в этом случае произойдёт сильный взрыв в результате разложения пероксидов.

 

Важнейшие эфиры

Название Формула Температура плавления Температура кипения
Диметиловый эфир CH3OCH3 −138,5 °C −24,9 °C
Диэтиловый эфир CH3CH2OCH2CH3 −116,3 °C 34,6 °C
Диизопропиловый эфир (CH3)2CHOCH(CH3)2 −86,2 °C 68,5 °C
Анизол −37 °C 154 °C
Оксиран −111,3 °C 10,7 °C
Тетрагидрофуран −108 °C 65,4 °C
Диоксан 11.7 °C 101.4 °C
Полиэтиленгликоль HOCH2(CH2OCH2)nCH2OH

 

Биологическое значение

Ариловые эфиры — консерванты, антиоксиданты, применяются в парфюмерной промышленности. Некоторые простые эфиры обладают инсектицидным действием.

60. Заместительная номенклатура (ИЮПАК) органических соединений.

В заместительной номенклатуре ИЮПАК наименование органического соединения определяется названиями главной цепи (корень слова), атомы углерода в которой нумеруются в определённом порядке, а также заместителей и функциональных групп (обозначаемых в виде префиксов или суффиксов). В качестве заместителя рассматривается любой атом или группа атомов, замещающих водород. Функциональной группой считается атом или группа атомов неуглеводородного характера, которые определяют принадлежность соединения к тому или иному классу. Если групп несколько, то выделяют старшую:

3-метилбутаналь 1,3-бензолдисульфоновая кислота

ИЮПАК — общепринятая номенклатура, сейчас она является стандартом в химии.

61. Окисление С-Н и С = С связей.

 

62. Ковалентные связи. Гибридизация.

Ковалентная связь (атомная связь, гомеополярная связь) — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой. Ковалентная связь образуется парой электронов, поделённой между двумя атомами, причём эти электроны должны занимать две устойчивые орбитали, по одной от каждого атома.[4]

A· + ·В → А: В

В результате обобществления электроны образуют заполненный энергетический уровень. Связь образуется, если их суммарная энергия на этом уровне будет меньше, чем в первоначальном состоянии (а разница в энергии будет ни чем иным, как энергией связи).

Согласно теории молекулярных орбиталей, перекрывание двух атомных орбиталей приводит в простейшем случае к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО. Обобществленные электроны располагаются на более низкой по энергии связывающей МО. Гибридизация орбиталей — гипотетический процесс смешения разных (s, p, d, f) орбиталей центрального атома многоатомной молекулы с возникновением одинаковых орбиталей, эквивалентных по своим характеристикам.

 

Виды гибридизации




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 2350; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.028 сек.