Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Поляризация диэлектриков в электрическом поле




- смещение положительного и отрицательного зарядов в противоположные стороны, т.е.ориентация молекул.

Поляризация полярных диэлектриков

Диэлектрик вне эл.поля - в результате теплового движения электрические диполи ориентированы беспорядочно на поверхности и внутри диэлектрика.
q = 0 и Eвнутр = 0

Диэлектрик в однородном эл.поле - на диполи действуют силы, создают моменты сил и поворачивают диполи вдоль силовых линий эл.поля.

НО ориентация диполей - только частичная, т.к. мешает тепловое движение.
На поверхности диэлектрика возникают связанные заряды, а внутри диэлектрика заряды диполей компенсируют друг друга.
Таким образом, средний связанный заряд диэлектрика = 0.

Поляризация неполярных диэлектриков - тоже поляризуются в эл.поле: положительные и отрицательные заряды молекул смещаются,

центры распределения зарядов перестают совпадать (как диполи), на поверхности диэлектрика возникает связанный заряд, а внутри эл.поле лишь ослабляется.


Ослабление поля зависит от свойств диэлектрика.

6. Электроемкость. Электроемкость шара. Емкость плоского конденсатора.

Электроемкость*
— Это отношение количества электричества, имеющегося на каком-либо проводящем теле, к величине потенциала этого тела при условии, что все проводящие тела, находящиеся вблизи этого тела, соединены с землей. Обозначая Э. тела через С, заряд на теле через Q и потенциал через V, имеем C = Q/V.
Употребляя абсолютные электростатические единицы в системе CGS, мы получаем Э. какого-либо тела, выражающуюся в единицах длины, т. е. в сантиметрах. В самом деле, при такой системе единиц "измерения" количества электричества будут: см 3/2 г 1/2 сек. -1, а "измерения" потенциала — см 1/2 г 1/2 сек. -1, или, употребляя для единиц длины, массы и времени символы L, M, T, мы можем представить: "измерения" Q в виде [ Q ] = [ L 3/2 M 1/2 T- 1 ], "измерения" V в виде [ V ] = [L 1/2 M 1/2 T —1 ]. Отсюда находим: измерения Э.
[ C ] = [ L 3/2 M 1/2 / T —1]/[ L 1/2 M 1/2 T —1] = [L].
В электростатике доказывается, что Э. шара, помещенного в воздухе вдали от каких-либо проводящих тел, выражается величиной радиуса этого шара, т. е. для одинокого шара в воздухе C = R, если R выражает радиус шара. Э. плоского конденсатора выражается формулой:
С = KS/4 π d.
Здесь S обозначает величину собирательной поверхности конденсатора, d — толщину изолирующего слоя в конденсаторе и K — диэлектрический коэффициент вещества этого слоя. Эта формула будет истинная только для конденсатора с охранным кольцом и с охранной коробкой (см. Конденсатор). Э. сферического конденсатора выражается формулой:
C = K(R 1 R 2) /(R 2 —R 1).
Здесь R1 и R2 обозначают радиусы соответственно внутренней и внешней сферической поверхности конденсатора, K — диэлектрический коэффициент изолирующего слоя.
Э. цилиндрического конденсатора выражается (приблизительно) как
C = ½KL / lg (R 2/ R 1).
Здесь L — длина конденсатора, R 1 и R 2 — радиусы соответственно внутреннего и внешнего цилиндра, K — диэлектрический коэффициент изолирующего слоя. lg обозначает натуральный логарифм. Э. лейденской банки выражается приблизительно как
C = S/4 π d,
если S обозначает поверхность внутренней обкладки этой балки, d — толщину стенок её и K — диэлектрический коэффициент стекла.

Конденсаторы состоят из двух или более близко расположенных друг к другу проводников (обкладок), разделенных слоем диэлектрика (рис. 1), причем толщина слоя диэлектрика между проводниками значительно меньше размеров самих проводников.

Рис. 1

При небольших размерах конденсатор отличается значительной емкостью, не зависящей от наличия вблизи него других зарядов или проводников.

Обкладкам конденсатора сообщают одинаковые по модулю, но противоположные по знаку заряды, что способствует накоплению зарядов, так как разноименные заряды притягиваются и поэтому располагаются на внутренних поверхностях пластин.

Под зарядом конденсатора понимают заряд одной пластины.

Электроемкостью конденсатора называют физическую величину, численно равную отношению заряда конденсатора к разности потенциалов между его обкладками:

или

Поле плоского конденсатора можно рассматривать как совокупность полей двух бесконечных разноименно заряженных плоскостей (рис. 2, а и б). Напряженность поля (рис. 2, в) можно найти по принципу суперпозиции: — напряженность поля конденсатора, где σ — поверхностная плотность заряда на обкладках конденсатора.

Рис. 2

Рассчитаем емкость плоского конденсатора.

Обозначим площадь одной обкладки S, расстояние между ними d. Так как , q = σS, U = Ed, то , где . Следовательно, емкость плоского конденсатора

Таким образом, емкость плоского конденсатора зависит от площади обкладок, расстояния между ними и диэлектрической проницаемости диэлектрика, заполняющего пространство между обкладками конденсатора, но не зависит от материала, из которого эти пластины изготовлены.

Конденсаторы можно классифицировать по следующим признакам и свойствам:

1. по назначению — конденсаторы постоянной и переменной емкости;

2. по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;

3. по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и т.д.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 907; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.