Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение силы давления покоящейся жидкости на плоские поверхности. Центр давления




Для того, чтобы определить силу давления, будем рассматривать жидкость, которая находится в покое относительно Земли. Если выбрать в жидкости произвольную горизонтальную площадь ω, то, при условии, что на свободную поверхность действует ратм= р0, на ω оказывается избыточное давление:

Ризб = ρghω. (1)

Поскольку в (1) ρghω есть не что иное, как mg, так как hω и ρV = m, избыточное давление равно весу жидкости, заключенной в объеме hω. Линия действия этой силы проходит по центру площади ω и направлена по нормали к горизонтальной поверхности.

Формула (1) не содержит ни одной величины, которая характеризовала бы форму сосуда. Следовательно, Ризб не зависит от формы сосуда. Поэтому из формулы (1) следует чрезвычайно важный вывод, так называемый гидравлический парадокс – при разных формах сосудов, если на свободную поверхность оказывается одно и тоже р0, то при равенстве плотностей ρ, площадей ω и высот h давление, оказываемое на горизонтальное дно, одно и то же.

При наклонности плоскости дна имеет место смачивание поверхности с площадью ω. Поэтому, в отличие от предыдущего случая, когда дно лежало в горизонтальной плоскости, нельзя сказать, что давление постоянно.

Чтобы определить его, разобьем площадь ω на элементарные площади dω, на любую из которых действует давление

По определению силы давления,

 

причем dP направлено по нормали к площадке ω.

Теперь, если определить суммарную силу которая воздействует на площадь ω, то ее величина:

 

Определив второе слагаемое в (3) найдем Рабс.

Pабс = ω(p0 + hц. е). (4)

Получили искомые выражения для определения давлений, действующих на горизонтальную и наклонную

плоскости: Ризб и Рабс.

Рассмотрим еще одну точку С, которая принадлежит площади ω, точнее, точку центра тяжести смоченной площади ω. В этой точке действует сила P0= ρ0ω.

Сила действует в любой другой точке, которая не совпадает с точкой С.

 




Поделиться с друзьями:


Дата добавления: 2015-05-23; Просмотров: 388; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.