КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основні положення квантової механіки
Основні положення квантової механіки — науки, яка описує властивості мікрочастинок, були сформульовані у 1925—1926 роках Гейзенбергом, Шредінгером, Діраком та іншими. У свою чергу механіку, засновану на законах Ньютона, яку використовують для пояснення властивостей макротіл, називають класичною механікою. Вона описує властивості частинок, які видно неозброєним оком, і не придатна для пояснення властивостей мікрочастинок. Особливості їх поведінки обумовлені малими масами і великими швидкостями. Квантова механіка відрізняється від класичної тим, що: 1. Класична механіка заснована на законах, які стверджують безперервну зміну властивостей тих чи інших об'єктів. Квантова механіка вважає, що все, що існує і відбувається у навколишньому середовищі, є дискретним (переривчастим). Вперше положення про дискретність було сформульоване Планком у 1900 році для процесів випромінювання та поглинання енергії: «Енергія випромінюється і поглинається окремими порціями (квантами), енергія квантів пропорційна частоті коливань випромінювання». Планк вважав, що процес випромінювання атомами світлової енергії відбувається не безперервно, а порціями, величина яких залежить від частоти коливань випромінюваного світла: E = h v. 2. У класичній механіці розрізняють поняття «частинка» і «хвиля». Властивості частинок описують їх масою т, швидкістю руху v, імпульсом р. Хвильовий рух характеризують довжиною хвилі λ, частотою випромінювання v, амплітудою коливань ψ. Згідно з уявленнями класичної механіки, об'єкт повинен проявляти властивості частинки або властивості хвилі, а не ті та інші одночасно. Квантова механіка вважає, що залежно від умов експерименту мікрооб'єкти проявляють властивості частинки або властивості хвилі, тобто мають корпускулярно-хвильову двоїстість. Математично це положення квантової механіки можна довести таким чином: якщо вираз для енергії у рівнянні Ейнштейна: Е = т с2, де т - маса тіла, Е— його енергія, с — швидкість світла у вакуумі, яка дорівнює приблизно 300 000 км/с, прирівняти до виразу енергії у рівнянні Планка: Е = hv, то одержують: т с2 = hv. Оскільки довжина хвилі електромагнітного коливання λ та його частота v зв’язані співвідношенням λ∙v = с, то v = с/λ, тоді т с2 = h∙с/λ, та λ = h/ т с Наведена залежність довжини хвилі від маси мікрочастинки підтверджує, що фотон проявляє одночасно властивості частинки і хвилі. Електрон, як усяка мікрочастинка, проявляє корпускулярно-хвильову двоїстість і, залежно від умов експерименту, поводить себе як частинка або як хвиля. Як частинка він має певну масу і, взаємодіючи з ядром атома елемента, зумовлює появу рентгенівських променів. З іншого боку, електрон, який рухається, має хвильові властивості. При взаємодії пучка електронів з дифракційною решіткою, роль якої відіграють кристали металів, спостерігається така ж дифракційна картина, як при дії на кристалічну решітку металу рентгенівських променів — потік електронів обгинає вузли кристалічної решітки металу. У наш час хвильові властивості електрона використовують в електронографії - методі вивчення структури кристалічних речовин, основаному на дифракції електронів. Математично корпускулярно-хвильову двоїстість електрона виражає рівняння Луї де Бройля, згідно з яким частинці, яка має масу т і рухається із швидкістю v, відповідає довжина хвилі λ: λ = h/m v Рівняння визначає залежність між величиною, характерною для частинки, її масою та величиною, характерною для хвильового процесу — довжиною хвилі. Згідно з рівнянням Луї де Бройля електрон масою 9,1∙10-28 г, який рухається із швидкістю 108 см/с, має властивості хвилі, довжина якої дорівнює 10-8 см, тобто довжина хвилі співрозмірна з розмірами атома та її можна експериментально визначити. 3. Згідно із законами класичної механіки, для будь-якого макрооб'єкту можна одночасно визначити положення частинки в будь-який час та її масу, а для хвильового процесу — довжину хвилі та швидкість її поширення. Для мікрочастинок — електронів, молекул, атомів, як довів у 1927 році німецький фізик Гейзенберг, внаслідок їх корпускулярно-хвильової двоїстості неможливо одночасно визначити положення частинки та її швидкість. Математичний вираз принципу невизначеності Гейзенберга має вигляд: ∆р∆ х ≥h/2π, оскільки р = т v, то ∆ х ∆v ≥ h/2πm де ∆ v — неточність вимірювання швидкості частинки; ∆х — неточність вимірювання її координати, j Тобто мікрочастинка, як і хвиля, не має одночасно точних значень координати та імпульса. Так, якщо положення електрона буде визначено з точністю 10-10 см, то його швидкість складає 58000 км/с, тоді як швидкість електрона дорівнює 2000 км/с. Закономірність руху мікрочастинок у квантовій механіці описує рівняння Шредінгера, яке відіграє роль, аналогічну законам Ньютона в класичній механіці. Рівняння Шредінгера пов'язує функцію ψ (псі), яка характеризує хвильові властивості мікрочастинок, з їх потенціальною енергією U та повною енергією Е. Для стаціонарного стану однієї частинки рівняння Шредінгера має вигляд: δ2Ψ/δх2 + δ2Ψ/δy2 + δ2Ψ/δz2 + 8πm/h2 (E-U)Ψ = 0 де Ψ - хвильова функція; U— потенціальна енергія частинки; Е — повна енергія; х, у, z - координати частинки. Часто це рівняння записують у компактній формі: НΨ = ЕΨ, де Н — оператор Гамільтона, який виражає у загальному вигляді всі математичні дії, які здійснюються над хвильовою функцією Ψ. Фізичний зміст хвильової функції Ψ пояснити важко, оскільки вона не має аналогів у макросвіті. Квадрат хвильової функції Ψ2 має цілком визначений фізичний зміст, який характеризує імовірність знаходження мікрочастинки у даній точці атомного простору. Величина Ψ2d v характеризує імовірність виявлення частинки у сегменті навколоядерного об'єму d v.
Дата добавления: 2015-05-24; Просмотров: 5038; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |