Спосіб візуалізації
| Опис
|
Табличні дані
|
Таблиця
| Стандартне табличне подання з можливістю сортування, експорту та фільтрації даних.
|
Статистика
| Статистичні показники вибірки по всіх полях, гістограми розподілу значень.
|
Графіки
|
Діаграма
| Графік зміни будь-якого числового показника з можливістю деталізації даних. Підтримується безліч способів відображення: лінійчаті й стовпчасті діаграми, області, точки та інше.
|
Гістограма
| Графік розкиду показників. Гістограма призначена для візуальної оцінки розподілу даних. Розподіл даних робить значний вплив на процес побудови моделі. Вбудована можливість деталізації даних гістограми.
|
Багатовимірна діаграма
| Дозволяє візуально оцінити залежності між різними полями, відображається у вигляді 3D-поверхні або топографічної діаграми.
|
Діаграма розміщення
| Розміщення об'єктів в 2-х, 3-х мірному просторі. Додаткову інформативність забезпечують колір, розмір і форма об'єктів.
|
OLAP аналіз
|
Куб
| Багатовимірне представлення даних. Будь-які дані, що використовуються в програмі, можна подивитися у вигляді крос-таблиці і крос-діаграми. Користувачеві доступний весь набір механізмів маніпуляції багатовимірними даними - угруповання, фільтрація, сортування, довільне розміщення вимірювань, деталізація, вибір будь-якого способу агрегації, відображення в абсолютних числах і у відсотках.
|
Очистка даних
|
Дублікати і протиріччя
| Табличне відображення інформації після застосування обробника "Дублікати і протиріччя". Кольорове виділення виявлених дублікатів та протиріч з можливістю автоматичної фільтрації.
|
Матриця кореляції
| Відображає коефіцієнти кореляції, розраховані за допомогою обробника "Кореляційний аналіз". Підтримується можливість експорту інформації в Excel, Word, HTML.
|
Data Mining
|
Граф нейромережі
| Візуальне відображення навченої нейромережі. Відображається структура нейронної мережі і значення ваг.
|
Дерево рішень
| Відображення дерева рішень, отриманого за допомогою відповідного алгоритму. Є можливість подивитися детальну інформацію по будь-якому вузлу і фільтрувати потрапили в нього дані.
|
Правила дерев рішень
| Відображає в текстовому вигляді правила, отримані за допомогою алгоритму побудови дерев рішень. Такого роду інформація легко інтерпретується людиною. Підтримуються різні способи фільтрації і сортування отриманих правил.
|
Значимість атрибутів
| Відображення значущості атрибутів. Розраховується за допомогою алгоритму побудови дерева рішень.
|
Карта Кохонена
| Відображення карт, побудованих за допомогою відповідного алгоритму. Широкі можливості налаштування - вибір кількості кластерів, фільтрація по вузлу / кластеру, вибір відображуваних полів. Потужний і гнучкий механізм відображення кластеризованих даних.
|
ROC-аналіз
| ROC-крива (Receiver Operator Characteristic) - крива використовується для представлення результатів бінарної класифікації в машинному навчанні. ROC-крива покази-кість залежність кількості вірно класифікованих позитивних прикладів від кількості невірно класифікованих негативних прикладів.
|
Коефіцієнти регресії
| Табличні коефіцієнти, розраховані за допомогою алгоритму лінійної регресії. Підтримується можливість експорту інформації в Excel, Word, HTML.
|
Профілі кластерів
| Дозволяє наочно оцінити результати кластеризації, цей візуалізатор доступний лише для обробника "Кластеризація". Він відображає розбиття на кластери, значимість факторів, статистичні характеристики кожного кластера.
|
Правила асоціацій
| Відображає в текстовому вигляді правила, отримані за допомогою алгоритму пошуку асоціативних зв'язків. Такого роду інформація легко інтерпретується людиною. Підтримуються різні способи фільтрації і сортування отриманих правил.
|
Популярні набори
| Часто зустрічаються безлічі, виявлені за допомогою алгоритму пошуку асоціативних правил.
|
Дерево правил
| Відображення дерева правил, отриманих за допомогою алгоритму пошуку асоціацій. Правила можуть бути згруповані як за умовою, так і по слідству.
|
Що-якщо
| Таблиця і діаграма для моделей, побудованих за допомогою лінійної регресії, нейронної мережі, дерева рішень, самоорганізованих карт і асоціативних правил. Дозволяють "проганяти" через побудовану модель будь-які цікаві для користувача дані і оцінити вплив того чи іншого чинника на результат. Активно використовується для вирішення завдань оптимізації. У разі відображення асоціативних правил дозволяє ввести елементи, що входять до транзакцію і отримати всі можливі наслідки з введеного набору.
|
Навчальний набір
| Вибірка, використовувана для побудови моделі. Кольором виділяються дані, що потрапили в навчальне і тестове безліч з можливістю фільтрації. Необхідна для розуміння, які записи і яким чином використовувалися при побудові моделі.
|
Діаграма прогнозу
| Застосовується після використання методу обробки - прогнозування. Прогнозні значення виділяються на діаграмі кольором.
|
Таблиця спряженості
| Призначена для оцінки результатів класифікації незалежно від використовуваної моделі. Таблиця спряженості відображає результати порівняння категоріальних значень вихідного вихідного стовпця і категоріальних значень розрахованого вихідного стовпця. Використовується для оцінки якості класифікації. Передбачені механізми аналізу відхилень.
|
Діаграма розсіювання
| Графік відхилення прогнозованих за допомогою моделі значень від реальних. Може бути побудований тільки для безперервних величин і тільки після використання механізмів побудови моделі, наприклад, нейромережі або лінійної регресії. Використовується для візуальної оцінки якості побудованої моделі. Вбудоване автоматична побудова гістограми розподілу помилки.
|
Загальні
|
Відомості
| Текстовий опис параметрів імпорту / обробки / експорту / підключення. Підтримується можливість експорту інформації в HTML і текстовий файл.
|