КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Однофакторний дисперсійний аналіз
Дисперсійний однофакторний аналіз використовується у дослідженнях зміни результативної ознаки під впливом зміни умов або градацій фактора. Суть математичних перетворень дисперсійного методу полягає в тому, щоб зіставити дисперсії за факторами із дисперсією усіх значень, отриманих в експерименті. Однофакторний аналіз вимагає не менше трьох градацій фактора і не менше двох випробовувань у кожній градації. При проведенні дисперсійного аналізу необхідно перевірити нормальність розподілу досліджуваної випадкової величини і відсутність відмінності дисперсій сукупностей. Це можна виконати методами перевірки статистичних гіпотез. Розглядається дія одиничного фактору А (кількісного чи якісного), котрий приймає k різних значень (рівнів фактора). Найпростіші розрахунки виходять при рівній кількості дослідів на кожному рівні фактора А.
Дисперсійний аналіз можна провести за наступним алгоритмом: 1. Обчислити: a. суми за стовпцями: b. суму квадратів усіх дослідів: c. суму квадратів сум за стовпцями, поділену на число дослідів в стовпці: d. квадрат загальної суми, поділений на число всіх дослідів (коректуючий член): e. суму квадратів для стовпчика: f. загальну суму квадратів, рівну різниці між сумою квадратів всіх дослідів та коректуючим членом: g. залишкову суму квадратів для оцінки помилки експерименту: h. дисперсію : ; i. дисперсію: : ; 2. Результати розрахунків представити у вигляді таблиці дисперсного аналізу:
Якщо то вплив фактора слід вважати незначним. При цьому загальна дисперсія пов’язана тільки з фактором випадковості і може служити оцінкою для дисперсії відтворення. Така оцінка краща від , бо має більше число степенів вільності. Якщо ж справедлива нерівність
Дата добавления: 2015-05-24; Просмотров: 844; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |