КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основні уявлення про пластичний обмін, біосинтез білків, фотосинтез
Лекція 5. Тема. ФІЗІОЛОГІЯ ОБМІНУ РЕЧОВИН Вікові особливості системи крові. 1. З віком зменшується відносна кількість крові, а збільшується - абсолютна. 2. Вміст білків плазми крові досягає рівня дорослого в 10-11 років. Низький вміст білків та інших органічних речовин у крові зумовлює менші функціональні можливості системи крові підтримувати водно-сольовий гомеостаз при фізичних навантаженнях. 3. У дітей менша, ніж у дорослих кількість еритроцитів і вміст в них Нb, що обумовлює низькі функціональні можливості дихальної функції крові (одна з причин низької витривалості). 4. Чим менший вік дитини, тим більше в її крові молодих, незрілих форм лейкоцитів і тим нижча фагоцитарна активність (одна з причин частих захворювань дітей). 5. Концентрація тромбоцитів у крові дітей лише дещо нижча, ніж у крові дорослих (140-300 тис.). У міру старіння відзначається підвищення кількості тромбоцитів, зростає концентрація фібриногену в крові, підвищується здатність до коагуляції.
Пластичний обмін (анаболізм, асимиляція) – сукупність біохімічних ферментативних процесів синтезу біоорганічних сполук: - Поживні речовини (білки, ліпіди і вуглеводи), які поступають з їжею, не схожі на відповідні високомолекулярні сполуки даного організму. - У процесі травлення ці сполуки розпадаються до мономерів, які використовуються в процесі біосинтезу специфічних високомолекулярних речовин. До основних процесів пластичного обміну належить біосинтез білків, вуглеводів, ліпідів, нуклеїнових кислот, а також фотосинтез і хемосинтез. Організми розрізняються між собою специфічними білками. Білки складаються з амінокислот. Взаєморозташування амінокислот визначає специфічні властивості білка. Біосинтез білків відбувається у цитоплазмі клітини на спеціальних органелах – рибосомах. Кожна рибосома має велику і малу субодиниці, які відіграють важливу роль на різних етапах біосинтезу білків. Найважливішу роль у процесі біосинтезу білка відіграють нуклеїнові кислоти – ДНК, РНК. На ДНК записана інформація про білки. Ген – ділянка ДНК, яка містить інформацію про первинну структуру білка. Біосинтез білка проходить у 4 етапи: І етап. Транспірація – передача інформації про структуру білка з молекули ДНК на і-РНК. Цей процес здійснюється з участю спеціальних ферментів і відбувається так: подвійний ланцюг на певному відрізку роз’єднується і вздовж одного з ланцюгів ДНК починається синтез молекули і-РНК за принципом комплементарності. Певна ділянка ДНК (ген) є матрицею для відповідної і-РНК. і-РНК після транскрипції зазнають процесу сплайсінгу – з новоутвореної і-РНК вирізаються неінформаційні фрагменти – інтрони і зшиваються інформаційні ділянки – інтрони. Екзони – послідовність нуклеотидів у генах, що кодують синтез білка (інформативна ділянка). Інтрони – послідовність нуклеотидів ДНК, що не кодують синтез білка (неінформативна ділянка). Спейсери – частина ДНК, що взагалі не несе генетичної інформації. Синтезовані молекули і-РНК переходять із ядра в цитоплазму, а ДНК відновлює свою структуру. ІІ етап. Активація амінокислот. Цей процес відбувається в цитоплазмі. Активовані молекули амінокислот з’єднуються з молекулами транспортних РНК, кожній з 20 амінокислот відповідає певна т-РНК. У молекулі т-РНК є дві важливі ділянки: до однієї з них прикріплюється відповідна амінокислота, а інша містить триплет нуклеотидів, який відповідає коду даної амінокислоти в молекулі і-РНК. Активовані амінокислоти, сполучені з т-РНК надходять до рибосом. ІІІ етап. Трансляція – синтез поліпептидних ланцюгів. Відбувається так: молекула і-РНК рухається між двома субодиницями рибосом і до неї послідовно приєднуються молекули т-РНК з амінокислотами. При цьому за принципом комплементарності кодони і-РНК вступають у зв’язок з антикодонами т-РНК. Послідовність розташування амінокислот при цьому визначається порядком чергування триплетів у молекулі і-РНК. Амінокислоти утворюють пептидні зв’язки за рахунок енергії АТФ і в результаті з рибосоми сходить поліпептидний ланцюг. ІV етап. Термінація – утворення вторинної і третинної структур білкової молекули. Цей етап здійснюється в цитоплазмі шляхом скручування, згортання поліпептидного ланцюга. Для синтезу білка необхідно: 1) енергія (у вигляді АТФ у мітохондріях). 2) відповідні ферменти. 3) інформація про структуру білка (у ДНК, а потім в і-РНК). 4) амінокислоти і відповідні їм т-РНК. 5) рибосоми. Молекули білка синтезуються у клітині впродовж 1-2 с. Синтез білків у клітині відбувається в інтерфазі – період між її поділом.
Дата добавления: 2015-05-24; Просмотров: 573; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |