Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Представление логических функций в виде СДНФ (СКНФ)




Совершенной конъюнктивной нормальной формой (СКНФ) называется такая КНФ, у которой в каждую простую дизъюнкцию входят все переменные данного списка (либо сами, либо их отрицания), причем в одинаковом порядке.

Например, выражение является СКНФ.

Приведем алгоритмы переходов от одной формы к другой. Естественно, что в конкретных случаях (при определенном творческом подходе) применение алгоритмов бывает более трудоемким, чем простые преобразования, использующие конкретный вид данной формы:

а) переход от ДНФ к КНФ

Алгоритм этого перехода следующий: ставим над ДНФ два отрицания и с помощью правил де Моргана (не трогая верхнее отрицание) приводим отрицание ДНФ снова к ДНФ. При этом приходится раскрывать скобки с использованием правила поглощения (или правила Блейка). Отрицание (верхнее) полученной ДНФ (снова по правилу де Моргана) сразу дает нам КНФ:

Заметим, что КНФ можно получить и из первоначального выражения, если вынести у за скобки;

б) переход от КНФ к ДНФ

Этот переход осуществляется простым раскрытием скобок (при этом опять-таки используется правило поглощения)

Таким образом, получили ДНФ.

Обратный переход (от СДНФ к ДНФ) связан с проблемой минимизации ДНФ. Подробнее об этом будет рассказано в разд. 5, здесь же мы покажем, как упростить ДНФ (или СДНФ) по правилу Блейка. Такая ДНФ называется сокращенной ДНФ;

в) сокращение ДНФ (или СДНФ) по правилу Блейка

Применение этого правила состоит из двух частей:

- если среди дизъюнктных слагаемых в ДНФ имеются слагаемые , то ко всей дизъюнкции добавляем слагаемое К 1 К 2. Проделываем эту операцию несколько раз (можно последовательно, можно одновременно) для всех возможных пар слагаемых, а затем, применяем обычное поглощение;

- если добавляемое слагаемое уже содержалось в ДНФ, то его можно отбросить совсем, например,

или

Разумеется, сокращенная ДНФ не определяется единственным образом, но все они содержат одинаковое число букв (например, имеется ДНФ , после применения к ней правила Блейка можно прийти к ДНФ, равносильной данной):

в) переход от ДНФ к СДНФ

Если в какой-то простой конъюнкции недостает переменной, например, z, вставляем в нее выражение ,после чего раскрываем скобки (при этом повторяющиеся дизъюнктные слагаемые не пишем). Например:

г) переход от КНФ к СКНФ

Этот переход осуществляется способом, аналогичным предыдущему: если в простой дизъюнкции не хватает какой-то переменной (например, z, то добавляем в нее выражение (это не меняет самой дизъюнкции), после чего раскрываем скобки с использованием распределительного закона):

Таким образом, из КНФ получена СКНФ.

Заметим, что минимальную или сокращенную КНФ обычно получают из соответствующей ДНФ.

Будем использовать логическую функцию “эквивалентность”, записанную в виде ху. Напомним, что 00= 1; 01=0; 10= 0; 11= 1.Таким образом, ху = 1 тогда и только тогда, когда х = у.

Лемма. Любая логическая функция f (x 1, x 2, , xn) может быть представлена в виде дизъюнкции 2 п дизъюнктных слагаемых, причем дизъюнкция берется по всевозможным наборам из En. Этот факт будем записывать следующим образом:

(*)

где дизъюнкция проводится по всевозможным наборам (s1, s2, …, s п) из Еп.

Доказательство леммы.

а) Пусть f (x 1, x 2, , xn)= 1. Тогда слева в формуле (*) стоит 1. Докажем, что и справа в этом случае стоит 1, для чего достаточно указать одно дизъюнктное слагаемое, равное 1. Но среди всех наборов (s1, s2, , s п) имеется набор s1 = х 1, s2 = х 2, , s п = хп. Очевидно, что для этого набора слагаемое равно 1 (так как и .

б) Пусть f (x 1, x 2, , xn) = 0. Предположим, что справа стоит не ноль, а единица, тогда какое-то слагаемое тоже должно равняться 1, т. е. для некоторого набора

Это означает (по свойствам конъюнкции), что , откуда следует, что х 1=s1, х 2=s2 , , хп =sn, но в этом случае f (s1, s2,..., sn) f (x 1, x 2, , xn) = 0 и, значит, справа нет слагаемого, равного 1, т. е. в этом случае и справа и слева в формуле (*) стоит 0. Лемма доказана.

Теорема. Если булева функция не равна тождественному нулю, то ее можно представить в виде СДНФ по ее таблице истинности следующим образом: берем только те наборы переменных (х 1, х 2, , хn ), для которых f (х 1, х 2, , хn) =1, и составляем простую конъюнкцию для этого набора так: если хi = 0, то берем в этой конъюнкции , если хi = 1, то берем хi . Составляя дизъюнкцию этих простых конъюнкций, придем к СДНФ.

Доказательство. Пусть f (x 1, x 2, , xn) не равна тождественному нулю, тогда в дизъюнкции можно не записывать слагаемые, равные нулю, а из формулы (*) следует следующее представление для данной функции

Запись означает, что дизъюнкция берется по всем наборам (s1, s2,..., sn), для которых f (s1, s2,..., sn) = 1. Так как (если s1=0), из формулы (**) следует утверждение теоремы.

Следствие. Любую логическую (булеву) функцию можно выразить через три логические функции: конъюнкцию, дизъюнкцию и отрицание.

Из предыдущей теоремы видно, что следствие верно для любой функции, не равной тождественному нулю. Однако если f (x 1, x 2, , xn ) =0, то ее также можно выразить через конъюнкцию, дизъюнкцию и отрицание, например, так: f (x 1, x 2, , xn ) = x1 ,и, несмотря на то, что последнее выражение не является простой конъюнкцией (и, значит, не является СДНФ), тем не менее тождественный ноль также выражен через нужные три функции.

Набор функций, через которые можно выразить любые другие функции, называется полным набором (более точные формулировки даны в разд. 7). Таким образом, конъюнкция, дизъюнкция и отрицание являются полным набором.

По аналогии с представлением любой функции (не равной тождественному нулю) в виде СДНФ можно функцию (не равную тождественной 1) представить в виде СКНФ: простая дизъюнкция составляется для тех наборов переменных (х 1, х 2, , хп), для которых f (x 1, x 2, , xn) = 0, причем если хi = 1, то в этой дизъюнкции берем , если же хi = 0, то берем хi.

Пример. Составить для импликации и сложения по модулю 2 СДНФ и СКНФ.

 

х   у   х ® у х + у
       
       
       
       

Тогда СДНФ для этих функций:

СКНФ для этих функций:




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 3108; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.