Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Первый способ настройки УЛМ




Первым способом настройки, используемым в УЛМ. является фиксация некоторых входов. Для этого способа справедливо следующее соотношение между числом аргументов и числом настроечных входов. Пусть число аргументов n и требуется настройка на любую из функций. Тогда число комбинаций для кода настройки, равное числу функций, есть 22^n. Для двоичного кода число комбинаций связано с разрядностью кода выражением 2m, где m - разрядность кода. Приравнивая число воспроизводимых функций к числу комбинаций кода настройки, имеем для числа настроечных входов соотношение m = 2n.


Рис. 2.2 Схема использования мультиплек­сора в качестве УЛМ (а), примеры воспроиз­ведения функций при настройке константами (б) и при переносе одного аргумента в число сигналов настройки (в)

Рис 2.2

Полученному выражению отвечает соотношение между числом входов разного типа для мультиплексора. При этом на адресные входы следует подавать аргументы функции, а на информационные входы — сигналы настрой­ки (рис. 2.2, а). Таким образом, для использования мультиплексора в качест­ве УЛМ следует изменить назначение его входов.


Рис. 2.2, а — иллюстрируетвозможность воспроизведения с помощью мультиплексора любой функции n аргументов. Действительно, каждому на­бору аргументов соответствует передача на выход одного из сигналов на­стройки. Если этот сигнал есть значение функции на данном наборе аргу­ментов, то задача решена. Разным функциям будут соответствовать разные коды настройки. Алфавитом настройки будет {0,1} — настройка осуществля­ется константами 0 и 1. На рис. 2.2, б показан пример воспроизведения функции неравнозначности Х1+ Х2 с помощью мультиплексора "4—1".

Большое число настроечных входов затрудняет реализацию УЛМ. Для УЛМ, расположенных внутри кристалла, можно вводить код настройки последова­тельно в сдвигающий регистр, к разрядам которого подключены входы на­стройки. Тогда внешним входом настройки будет всего один, но настройка будет занимать не один такт, а 2n тактов. Возможны и промежуточные по­следовательно-параллельные варианты ввода кода настройки.




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 727; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.