КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тема 2. Переходные процессы в RC-цепях
2-1. Процессы, протекающие в простейшей RC-цепи. Переходный процесс обусловлен тем, что энергия электромагнитных полей, связанных с цепью при различных установившихся режимах различна, а скачкообразное изменение энергии, т.е. изменение энергии на конечную величину за бесконечно малый промежуток времени, невозможно из-за ограниченности величины мощности физически существующих источников энергии. Линейным устройством (элементом) называется устройство (элемент), параметры которого не зависят от протекающего тока или приложенного напряжения. Нелинейное устройство - это устройство, параметры которого зависят от тока или напряжения. Переходные процессы в простейших линейных цепях, т.е. в цепях RL или RC описываются дифференциальным уравнением первого порядка:
,
где x (t) - напряжение или ток в схеме, y (t) - внешнее воздействие.
Решение этого уравнения для случая y (t) = const имеет вид:
,
где t - текущее время, x (t) - напряжение или ток в схеме, x (¥) - конечное значение x (t) при t ®¥, x (0) - начальное значение x (t) при t = 0. Характер изменения функции x (t) представлен на рис. 2.1 (убывающая или нарастающая экспонента).
Рис. 2.1. Характер изменения экспоненциальной функции.
Выполним следующие преобразования:
, .
Поскольку , то очевидно, что AB = t. При анализе переходных процессов часто возникает задача нахождения интервала времени , за который функция x (t) изменяется от значения x (t 1) до значения x (t 2). Запишем значение функции в точках t 1 и t 2:
, .
Откуда
, , , , .
Применим полученные соотношения для анализа RC-цепей. Предварительно напомним законы коммутации для RL и RC-цепей: 1-ый закон коммутации: напряжение на конденсаторе в момент коммутации не может измениться скачком UС (0-) = UС (0+); 2-ой закон коммутации: ток, протекающий через индуктивность, не может измениться скачком IL (0-) = IL (0+). Законы коммутации являются следствием того, что энергия в цепи не может изменяться мгновенно, так как для этого требуется бесконечно большая мощность источников энергии. Рассмотрим RC-цепь (рис. 2.2).
Рис. 2.2. Схема простейшей RC-цепи.
Пусть конденсатор не заряжен и в момент времени t = 0 ключ переходит из положения «0» в положение «1». Для начальных и установившихся режимов в этом случае можно записать: при t = 0 UС (0) = 0, UR (0) = E; при t = ¥ UС (¥) = E, UR (¥) = 0. После подстановки получаем:
, .
Считая, что конденсатор заряжен до значения UС = E, рассмотрим процесс после перевода ключа из положения «1» в положение «2». Начальные и установившиеся значения напряжений на элементах в этом случае запишутся: при t = 0 UС (0) = E, UR (0) = -E; при t = ¥ UС (¥) = 0, UR (¥) = 0. После подстановки получаем:
, .
Характер изменения функций UC (t) и UR (t) представлен на рис. 2.3.
Рис. 2.3. Характер изменения функций UС (t) и UR (t) простейшей RC-цепи.
Из курса математики известно, что за утроенное значение постоянной времени, т.е. за время 3 t, экспонента изменяется на 0.95 своего конечного полного изменения. Это значит, что за время 3 t конденсатор условно разряжается и заряжается.
2-2. Интегрирующая RC-цепь. Электрическая принципиальная схема интегрирующей RC-цепи представлена на рис. 2.4(а). Коммутация напряжения на входе, рассмотренная ранее, эквивалентна подаче на вход прямоугольного импульса напряжения (рис. 2.4(б)). Как было выведено ранее, характер изменения функции UC (t)= Uвых в общем случае выражается следующими зависимостями:
- нарастающая экспонента для 0 £ t £ tи; - убывающая экспонента для t > tи, где - значение напряжения, до которого успел зарядиться конденсатор в период действия импульса.
Рис. 2.4. Интегрирующая RC-цепь и временные диаграммы напряжений.
Разряд конденсатора после прекращения действия импульса приводит к тому, что выходной импульс будет иметь большую продолжительность, чем входной. Происходит расширение импульса без сохранения его формы, поэтому такая RC-цепь называется расширяющей. Поскольку , а , то . Так как , то .
Рассмотрим случай, когда . Поскольку , следовательно , и можно записать:
,
то есть на выходе интеграл от входного напряжения. Отсюда очевидно название рассмотренной цепи – интегрирующая. Эта цепь используется, в частности, для получения линейно изменяющегося напряжения. Для этого на вход интегрирующей цепи подается постоянное напряжение . Тогда получаем
,
то есть на выходе линейно изменяющееся напряжение (рис. 2.5).
Рис. 2.5. Графики изменения идеального и реального выходных напряжений интегрирующей RC-цепи.
В отличие от рассмотренного идеального случая, в реальной цепи
.
Найдем производную по t от функции идеального выходного напряжения:
.
Аналогично для функции реального выходного напряжения производная запишется:
.
При t =0 ,
т.е. в нуле производные реальной и идеальной функций совпадают, а в дальнейшем - расходятся. За меру расхождения на интервале [0, tи ] принимают коэффициент нелинейности - относительное изменение производной:
.
Для случая можно воспользоваться формулой разложения функции : при . Тогда
,
т.е. чем больше t при данном значении tи, тем меньше ß. Реальная функция Uвых.р в этом случае ближе к идеальной Uвых.ид.
2-3. Разделительная дифференцирующая RC-цепь. Электрическая принципиальная схема разделительной дифференцирующей RC-цепи и её временные диаграммы представлены на рис. 2.6.
Рис. 2.6. Разделительная дифференцирующая RC-цепь и временные диаграммы напряжений.
Как было показано ранее, меняется по закону:
для 0 £ t £ tи, для t > tи.
При рассматриваемая RC-цепь выполняет функции разделительной цепи, назначение которой передать входное напряжение с наименьшими искажениями и отделить при этом постоянную составляющую. Абсолютная величина завала вершины равна напряжению на конденсаторе в момент tи снятия входного импульса, т.е.
.
Для случая , с учетом рассмотренного ранее разложения функции при получаем:
.
Оценкой качества разделительной цепи является величина относительного завала вершины g, которая определяется как:
.
Таким образом, завал вершины, а значит искажение входного импульса, тем меньше, чем больше постоянная времени цепи t при данном tи. Если величина завала вершины несравненно мала, то импульс передается без искажения.
Рис. 2.7. Диаграммы входного и выходного напряжений разделительной цепи.
Из временной диаграммы рис. 2.7 видно, что амплитуда последовательности импульсов выходного напряжения постоянна, но при этом импульсы смещаются относительно нулевого уровня. В установившемся режиме площади под графиком S + положительной и S - отрицательной областей последовательности импульсов окажутся равными друг другу: S + = S -. Доказать этот факт можно, рассмотрев диаграмму тока, протекающего через резистор (рис.2.8). Очевидно, что i 1 t 1 - это заряд Qи, переносимый через емкость за время действия импульса на входе, а i 2(t 2- t 1) – заряд Qп, переносимый через емкость за время паузы между импульсами, т.е. в обратном направлении. Тогда общий заряд, переносимый через емкость за время, равное периоду импульса будет равен:
.
Поскольку постоянная составляющая через емкость не проходит , следовательно, или . Поскольку , а сопротивление – величина постоянная, то значит и равны S + и S - на диаграмме Uвых. Таким образом, для разделительной цепи необходимо выполнение условия: . Рис. 2.8. Диаграмма тока, протекающего через резистор разделительной RC-цепи.
Поскольку , а , то
Продифференцируем обе части полученного уравнения. Получим
Так как , то .
Рассмотрим случай . Поскольку , то можно записать . Тогда
.
Из полученной формулы следует название такой цепи – дифференцирующая. Для дифференцирующей цепи должно выполняться условие , т.е. конденсатор должен успевать быстро перезаряжаться при данном tи. Диаграммы входного и выходного напряжений дифференцирующей цепи для последовательности импульсов представлены на рис. 2.9.
Рис. 2.9. Диаграммы входного и выходного напряжений дифференцирующей RC-цепи.
Дата добавления: 2015-05-09; Просмотров: 2838; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |