КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Измерение
Большинство научных экспериментов и наблюдений включает в себя проведение разнообразных измерений. Измерение — это процесс, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных технических устройств. Огромное значение измерений для науки отмечали многие видные ученые. Например, Д.И. Менделеев подчеркивал, что «наука начинается с тех пор, как начинают измерять». А известный английский физик В. Томсон (Кельвин) указывал на то, что «каждая вещь известна лишь в той степени, в какой ее можно измерить»3. Важной стороной процесса измерения является методика его проведения. Она представляет собой совокупность приемов, использующих определенные принципы и средства измерений. Под принципами измерений в данном случае имеются в виду какие-то явления, которые положены в основу измерений (например, измерение температуры с использованием термоэлектрического эффекта). Результат измерения получается в виде некоторого числа единиц измерения. Единица измерения — это эталон, с которым сравнивается измеряемая сторона объекта или явления (эталону присваивается числовое значение «I»), Существует множество единиц измерения, соответствующее множеству объектов, явлений, их свойств, сторон, связей, которые приходится измерять в процессе научного познания. При этом единицы измерения подразделяются на ос- новные, выбираемые в качестве базисных при построении системы единиц, и производные, выводимые из других единиц с помощью каких-то математических соотношений. Методика построения системы единиц как совокупности основных и производных была впервые предложена в 1832 году К. Гауссом. Он построил систему единиц, в которой за основу были приняты три произвольные, независимые друг от друга основные единицы — длины (миллиметр), массы (миллиграмм) и времени (секунда). Все остальные (производные) единицы можно было определить с помощью этих трех. В дальнейшем с развитием науки и техники появились и другие системы единиц физических величин, построенных по принципу, предложенному Гауссом. Они базировались на метрической системе мер, но отличались друг от друга основными единицами. Кроме того, в физике появились так называемые естественные системы единиц. Их основные единицы определялись из законов природы (это исключало произвол человека при построении указанных систем). Примером может служить «естественная» система физических единиц, предложенная в свое время Максом Планком. В ее основу были положены «мировые постоянные»: скорость света в пустоте, постоянная тяготения, постоянная Больцма-на и постоянная Планка. Исходя из них и приравняв их к «I», Планк получил ряд производных единиц (длины, массы, времени и температуры). Основное значение подобных «естественных» систем единиц (к ним относятся также система атомных единиц Хартри и некоторые другие) состоит в существенном упрощении вида отдельных уравнений физики. Однако размеры единиц таких систем делают их малоудобными для практики. Кроме того, точность измерения основных единиц подобных систем, необходимая для установления всех производных единиц, еще далеко не достаточна. В силу указанных причин предложенные до сих пор «естественные» системы единиц не могут в настоящее время найти применения при решении вопроса об унификации единиц измерения. Вопрос об обеспечении единообразия в измерении величин, отражающих те или иные явления материального мира, всегда был очень важным. Отсутствие такого единообразия порождало существенные трудности для научного познания. Например, до 1880 года включительно не существовало единства в измерении электрических величин: использовалось 15 различных единиц электрического сопротивления, 8 единиц электродвижущей силы, 5 единиц электрического тока и т. д. Сложившееся положение сильно затрудняло сопоставление результатов измерений и расчетов, выполненных различными исследователями. Остро ощущалась необходимость введения единой системы электрических единиц. Такая система была принята первым международным конгрессом по электричеству, состоявшимся в 1881 году. В настоящее время в естествознании действует преимущественно Международная система единиц (СИ), принятая в 1960 году XI Генеральной конференцией по мерам и весам. Международная система единиц построена на базе семи основных (метр, килограмм, секунда, ампер, кельвин, кандела, моль) и двух дополнительных (радиан, стерадиан) единиц. С помощью специальной таблицы множителей и приставок можно образовывать кратные и дольные единицы (например, с помощью множителя 10-3 и приставки «милли» к наименованию любой из названных выше единиц измерения можно образовывать дольную единицу размером в одну тысячную от исходной). Международная система единиц физических величин является наиболее совершенной и универсальной из всех существовавших до настоящего времени. Она охватывает физические величины механики, термодинамики, электродинамики и оптики, которые связаны между собой физическими законами. Потребность в единой международной системе единиц измерения в условиях современной научно-технической революции очень велика. Поэтому такие международные организации, как ЮНЕСКО и Международная организация законодательной метрологии, призвали государства, являющиеся членами этих организаций, принять вышеупомянутую Международную систему единиц и градуировать в этих единицах все измерительные приборы. Существует несколько видов измерений. Исходя из характера зависимости измеряемой величины от времени, измерения разделяют на статические и динамические. При статических измерениях величина, которую мы измеряем, остается постоянной во времени (измерение размеров тел, постоянного давления и т. п.). К динамическим относятся такие измерения, в процессе которых измеряемая величина меняется во времени (измерение вибраций, пульсирующих давлений и т. п.). По способу получения результатов различают измерения прямые и косвенные. В прямых измерениях искомое значение измеряемой величины получается путем непосредственного сравнения ее с эталоном или выдается измерительным прибором. При косвенном измерении искомую величину определяют на основании известной математической зависимости между этой величиной и другими величинами, получаемыми путем прямых измерений (например, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения). Косвенные измерения широко используются в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат. Технические возможности измерительных приборов в значительной мере отражают уровень развития науки. С современной точки зрения, приборы, использовавшиеся учеными-естествоиспытателями в XIX веке и в начале XX столетия, были весьма несовершенны. Тем не менее, с помощью этих приборов ставились иногда блестящие эксперименты, оставившие заметный след в истории науки, открывались и изучались важные закономерности природы. С прогрессом науки продвигается вперед и измерительная техника. Наряду с совершенствованием существующих измерительных приборов, работающих на основе традиционных, утвердившихся принципов (замена материалов, из которых сделаны детали прибора, внесение в его конструкцию отдельных изменений и т. д.), происходит переход на принципиально новые конструкции измерительных устройств, обусловленные новыми теоретическими предпосылками. В последнем случае создаются приборы, в которых находят реализацию новые научные достижения. Так, например, развитие квантовой физики существенно повысило возможности измерений с высокой степенью точности. Использование эффекта Мессбауэра позволяет создать прибор с разрешающей способностью порядка 10-13 % измеряемой величины. Хорошо развитое измерительное приборостроение, разнообразие методов и высокие характеристики средств измерения способствуют прогрессу в научных исследованиях. В свою очередь, решение научных проблем, как уже отмечалось выше, часто открывает новые пути совершенствования самих измерений. 2. Общенаучные методы теоретического познания
Дата добавления: 2015-05-07; Просмотров: 652; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |