Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Фундаментальные процессы нервной системы




 

3.1. Возбудимые ткани и их свойства.

Любая живая ткань способна реагировать на различного рода воздействия и изменять свою текущую функциональную активность. Это общее свойство всех живых тканей называют раздражимостью. Однако только высокоорганизованные ткани реагируют на действие раздражителей процессом возбуждения, характеризующегося волнообразными изменениями электрического потенциала мембраны клетки, в результате чего она переходит в активное состояние. Такие ткани называют возбудимыми. К ним относятся нервная, мышечная и железистая ткани. Все возбудимые ткани обладают следующими свойствами:

- возбудимость, т.е. способность к возбуждению. Возбудимость ткани меняется в различных условиях. Она может быть повышенной (супернормальной), пониженной (субнормальной), а может отсутствовать(в этом случае говорят о рефрактерности ткани, которая, в свою очередь, может быть абсолютной и относительной).

- проводимость – способность к распространению возбуждения.

- Функциональная лабильность (подвижность) – определяется количеством возбуждений в единицу времени.

Каждая возбудимая ткань имеет и специфические свойства: для мышечной ткани – это сократимость, для нервной- проведение нервного импульса, для железистого эпителия – выделение секрета. Для того, чтобы ткань проявила свои свойства, на неё надо подействовать раздражителем.

3.2. Характеристика раздражителей. Порог раздражения.

Раздражители - это факторы внешней или внутренней среды, способные вызвать ответную реакцию живого образования. Для этого они должны быть достаточной силы и действовать определенное время. По силе различают:

- пороговый раздражитель – это наименьшая сила раздражителя, необходимая для возникновения ответной реакции;

- подпороговый раздражитель, сила которого ниже пороговой;

- сверхпороговый раздражитель (сила выше пороговой).

По пороговой силе раздражителя судят о возбудимости ткани: снижение порога свидетельствует о повышении возбудимости и наоборот. Следовательно, порог раздражения (минимальная сила, вызывающая ответную реакцию) служит критерием оценки возбудимости. По биологическому значению раздражитель может быть адекватным (если он воздействует в естественных условиях на определенные рецепторы) и неадекватным. Адекватный раздражитель способен вызвать возбуждение в минимальной дозе. По происхождению раздражители делят на механические, температурные, химические и т.д. Особое место в физиологии возбуждения занимает электрический ток, так как его легко дозировать, он не повреждает живую ткань, действие его обратимо. Кроме того, сам процесс возбуждения имеет электрическую природу.

 

3.3. Происхождение биопотенциалов.

Во второй половине 18 века благодаря работам итальянского ученого Л.Гальвани и его последователей стало известно о существовании «животного электричества» или биопотенциалов. Было выяснено, что мембрана живой клетки, находящейся в состоянии покоя, поляризована: её внутренняя поверхность заряжена отрицательно, а наружная – положительно. Этот потенциал называют мембранным потенциалом (МП) или потенциалом покоя. Величина мембранного потенциала в различных тканях колеблется от 60 до 90 мв. Происхождение мембранного потенциала объясняется мембранно-ионной теорией Ю.Бернштейна (1902г.) в модификации А.Ходжкин и А. Хаксли (1952г.). Согласно этой теории биоэлектрические явления обусловлены разностью (градиентом) концентраций ионов калия, натрия, хлора и др.внутри и вне клетки и различной проницаемостью для них мембраны клетки.

3.4. Строение и функции возбудимой мембраны.

Согласно современным представлениям клеточная мембрана состоит из двойного слоя фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу; такая структура идеально подходит для образования раздела двух сред: вне- и внутриклеточной. В двойной слой фосфолипидов погружены глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул. Одним из важнейших свойств клеточной мембраны является её избирательная проницаемость, связанная с открытием и закрытием селективных (специализированных) ионных каналов, пропускающих определенный вид ионов. В каждом канале существуют 2 типа ворот: быстрые активационные и медленные инактивационные. Второе важнейшее свойство мембраны- электровозбудимость - проявляется в способности к открытию и закрытию селективных ионных каналов в ответ на изменение мембранного потенциала.

3.5. Мембранный потенциал клетки.

Концентрация ионов калия в клетке почти в 50 раз выше, чем за клеткой, а натрия и хлора больше за клеткой, чем в клетке. Согласно законам диффузии происходит пассивный транспорт ионов по градиенту концентраций: калий стремится выйти из клетки, а натрий- зайти в клетку. Однако мембрана клетки обладает различной проницаемостью для этих ионов. В состоянии покоя мембрана больше проницаема для ионов калия, чем для натрия и анионов. Поэтому в покое преобладает движение ионов калия из клетки над входом в клетку ионов натрия. Калий в клетке находится в связанном состоянии с анионами, которых мембрана не пропускает, и они сосредоточиваются на внутренней поверхности мембраны, обусловливая её отрицательный заряд. А калий, выходя из клетки, сосредоточивается на наружной поверхности мембраны, обеспечивая ей положительный заряд. Таким образом, в состоянии покоя внутренняя поверхность клеточной мембраны заряжена отрицательно, а наружная – положительно. Заряд мембраны клетки, находящейся в состоянии покоя, носит название потенциал покоя или мембранный потенциал клетки. Главная роль в формировании потенциала покоя принадлежит ионам калия. Но если бы потенциал покоя был обусловлен только выходом ионов калия из клетки, то он был бы равен 97,5 мв (это равновесный потенциал, рассчитанный по формуле Нернста), но такого потенциала не имеет ни одна клетка, что свидетельствует о том, что в состоянии покоя мембрана пропускает в клетку небольшое количество натрия, а также хлора. Следовательно, величина исходного (мембранного) потенциала зависит от того, насколько движение ионов калия из клетки преобладает над входом в клетку ионов натрия. Чем выше соотношение между выходом калия и входом натрия, тем выше мембранный потенциал. Выход же калия зависит от градиента концентраций калия по обе стороны мембраны. И если бы существовал только пассивный транспорт ионов, то он неизбежно привел бы к выравниванию концентраций, а следовательно, и к исчезновению потенциала. Поэтому наряду с пассивным транспортом существует активный транспорт (калий-натриевый насос), осуществляющий движение ионов против градиента концентраций: калия – в клетку, а натрия – из клетки. При этом затрачивается энергия АТФ. Благодаря калий-натриевому насосу восстанавливается градиент концентраций ионов и поддерживается потенциал покоя.

Таким образом, прохождение ионов через мембрану, их асимметричное распределение по обе стороны мембраны и связанный с этим электрический потенциал осуществляется посредством 2-х механизмов: 1 – свободной диффузией ионов по концентрационному и электрохимическому градиенту; 2 – с помощью натрий- калиевого насоса.

3.6. Изменение мембранного потенциала при действии раздражителя.

При нанесении раздражения мембранный потенциал меняется, что связано с изменением проницаемости мембраны. При увеличении проницаемости для ионов натрия (открытие активационных натриевых каналов) натрий начинает поступать в клетку быстрее и в большем количестве, чем в состоянии покоя, что приводит к снижению исходного потенциала. Это явление (снижение мембранного потенциала) называется деполяризацией мембраны. Деполяризация характеризует процесс возбуждения. При повышении проницаемости для ионов хлора или калия наблюдается увеличение мембранного потенциала, которое носит название гиперполяризации мембраны; данное явление характерно для торможения.

Возбуждение может существовать в двух формах: 1 – местное возбуждение (или локальный ответ), которое не дает видимого ответа. 2 - распространяющееся возбуждение (или потенциал действия) – это истинное возбуждение, приводящее к ответной реакции.

3.7.Местное возбуждение

Это возбуждение возникает при действии раздражителя подпороговой силы (от 0,5 до 0,9 пороговой). Если действует раздражитель ниже 0,5 порогового, не возникает даже местного возбуждения, в данном случае возможно только пассивное изменение мембранного потенциала под электродом (электротонический потенциал), проницаемость мембраны при этом не изменяется. При местном возбуждении проницаемость мембраны для ионов натрия увеличивается, что приводит к деполяризации мембраны, но она не доходит до того критического уровня, который нужно достичь, чтобы возник потенциал действия. Для большинства тканей он равен (- 50 мв). Таким образом, критический уровень деполяризации – это уровень, отделяющий местное возбуждение от распространяющегося. И хотя местное возбуждение не дает видимой ответной реакции, свойства мембраны при этом меняются.

Свойства местного возбуждения: 1- градуальность, т.е зависимость от силы раздражителя. Чем ближе сила раздражителя к пороговой величине, тем деполяризация ближе к критическому уровню; 2- не распространяется или распространяется с декрементом, то есть с затуханием; 3 – способность к суммации. При неоднократном действии подпороговых раздражителей в результате суммации достигается критический уровень деполяризации, тогда местное возбуждение переходит в потенциал действия; 4- повышенная возбудимость.

3.8. Потенциал действия

Потенциал действия (ПД) или распространяющееся возбуждение возникает при действии пороговых или сверхпороговых раздражителей, а также в результате суммации подпороговых стимулов, когда достигается критический уровень деполяризации. Возбуждение – это процесс, характеризующийся волнообразными изменениями электропотенциалов на мембране.(рис.)

Выделяют несколько фаз потенциала действия:

- скрытый (латентный) период или местное возбуждение, когда деполяризация доходит до критического уровня.

- Деполяризация – дальнейшее снижение исходного потенциала до нуля, а затем перезарядка мембраны (до + 30 мв.), что регистрируется в виде пика или спайка.

- Пик ПД ещё называют овершут или инверсия, т.к при этом заряд меняется на противоположный (внутренняя поверхность мембраны заряжается положительно, а наружная – отрицательно). Восходящая часть ПД имеет большую крутизну (длится от 0,01 до 0,03 сек.), что обусловлено лавинообразным поступлением в клетку ионов натрия. Во время пика блокируются быстрые натриевые каналы и начинается обратный процесс.

- Реполяризация - восстановление мембранного потенциала вследствие восстановления проницаемости для ионов калия и натрия. Реполяризация или нисходящая часть ПД связана с выходом из клетки ионов калия. Но восстановление исходного потенциала происходит сравнительно медленно, при этом регистрируются следовые потенциалы

- Следовая деполяризация или следовой отрицательный потенциал – связан с восстановлением проницаемости для натрия. При этом потенциал близок к критическому уровню.

- Следовая гиперполяризация или следовой положительный потенциал обусловлен выходом ионов калия из клеткии работой натриевого насоса, осуществляющего активное выведение натрия,поступившего в клетку в процессе возбуждения.

Свойства потенциала действия: 1 – возникает при достижении критического уровня деполяризации; 2- не зависит от силы раздражителя (если сила подпороговая – ПД не возникает, пороговая или сверхпороговая- ПД возникает не зависимо от силы, подчиняется закону «всё или ничего»); 3 – не способен к суммации; 4 – не обратим; 5 – распространяется без затухания (без декремента).

3.9. Изменение возбудимости в процессе возбуждения.

В качестве мерила возбудимости берут пороговую силу раздражителя, которая определяется главным образом соотношением двух параметров: исходной величиной потенциала покоя и тем критическим уровнем, до которого надо довести потенциал, чтобы вызвать возбуждение. Чем ближе исходный потенциал к критическому уровню,тем меньше надо приложить силы, чтобы сдвинуть его к этому уровню, тем выше возбудимость. Разница между критическим уровнем и исходным потенциалом называется порогом деполяризации. Чем ниже порог деполяризации, тем выше возбудимость, и наоборот. Волнообразный процесс возбуждения сопровождается многофазными измененениями возбудимости:

1-в скрытый период возбуждения (местное возбуждение) возбудимость повышенная, так как потенциал приближается к критическому уровню;

2 – деполяризация и пик ПД сопровождается резким падением возбудимости до нуля (абсолютная рефрактерность). В это время блокируются натриевые каналы, что делает невозможным реакцию ткани на действие даже очень сильного раздражителя.

3 -в период реполяризации идет восстановление возбудимости (относительная рефрактерность);

4- следовая деполяризация сопровождается повышенной (супернормальной) возбудимостью, т.к. в это время потенциал приближен к критическому уровню.

5- следовой гиперполяризации мембраны соответствует пониженная (субнормальная) возбудимость, т.к. потенциал сдвинут в противоположную сторону от критического уровня.

 

3.10.Законы раздражения.

Ответная реакция живой ткани на действие раздражителей подчиняется трем основным законам:

1. Закон силы. Существует два проявления этого закона. Типичная реакция, характерная для большинства тканей, подчиняется закону силовых отношений, отражающего прямую зависимость ответной реакции от силы раздражителя: чем сильнее (выше пороговой) раздражитель, тем сильнее (до определенных пределов) ответная реакция. Другое проявление – закон «всё или ничего»: подпороговый раздражитель не вызывает ответной реакции («ничего»), пороговый и сверхпороговый раздражители дают одинаковую (максимальную) ответную реакцию («всё») Этому закону подчиняется одиночное мышечное волокно (хотя целая мышца реагирует по закону силы) и мышца сердца. В процессе возбуждения закон силы проявляется в локальном ответе, тогда как потенциал действия подчиняется закону «всё или ничего».

2. Закон силы – длительности (силы- времени). Этот закон отражает зависимость между силой и временем, в течение которого надо подействовать данной силой, чтобы вызвать ответную реакцию. Чем выше сила, тем меньше времени требуется для ответной реакции, и наоборот. Эта зависимость имеет характер гиперболы (рис.). Минимальная сила тока, вызывающая ответную реакцию, называется реобазой. Время, в течение которого надо действовать реобазой, чтобы вызвать ответную реакцию, называется полезное время. Однако это время измерить практически невозможно. Поэтому существует другой временной показатель, который можно зарегистрировать с помощью приборов – это хронаксия. Это минимальное время наступления ответной реакции при действии силы, равной удвоенной реобазе. Хронаксия, как и пороговая сила (реобаза) позволяет оценить возбудимость ткани. Чем меньше хронаксия, тем выше возбудимость, и наоборот.

3. Закон аккомодации – отражает зависимость ответной реакции от скорости нарастания силы раздражителя до определенной (пороговой) величины. При воздействии медленно нарастающих по силе раздражителей увеличивается порог возбудимости, что обусловлено повышением критического уровня деполяризации и инактивацией (закрытием) быстрых натриевых каналов. При медленном нарастании силы раздражителя до пороговой величины натриевые каналы закрываются раньше, чем потенциал достигнет критического уровня. В данном случае развивается стойкая деполяризация мембраны. Стойкая деполяризация сопровождается низкой возбудимостью, так как в этом случае не достигается критический уровень деполяризации, а следовательно, не возникает возбуждения.

3.11.Законы действия постоянного тока на возбудимые ткани.

Постоянный ток действует только в момент замыкания и размыкания цепи; его действие подчиняется 3-м законам:

1.Закон полярного действия - отражает связь раздражающего действия тока с полюсами (электродами): в момент замыкания цепи возбуждение возникает на катоде, при размыкании- на аноде. Причем раздражающее действие катода выражено сильнее.

2. Закон физиологического электротонуса – отражает влияние постоянного тока на возбудимость и проводимость ткани (эти изменения носят название физиологического электротонуса). В момент замыкания цепи на катоде возбудимость повышается (явление “катэлектротона”), что связано с деполяризацией мембраны. На аноде в это время – гиперполяризация и снижение возбудимости (явление “анэлектротона”). Однако при длительном действии тока или при действии сильного тока на катоде развивается стойкая деполяризация мембраны (феномен аккомодации), что ведет к резкому снижению возбудимости и проводимости. Это явление носит название “катодической депрессии”.

4. Закон сокращения говорит о том, что эффект действия постоянного тока (сокращение мышцы) зависит от силы и направления тока. В зависимости от того, какой электрод находится ближе к мышце, ток может быть нисходящим (если ближе к мышце расположен катод) и восходящим (ближе к мышце- анод). При действии слабого тока мышца сократится только в момент замыкания цепи и не сократится при размыкании, т.к.согласно закону полярного действия в момент замыкания возбуждение возникает на катоде, а он обладает большим раздражающим эффектом, чем анод, и может вызвать сокращение даже при слабом токе. При действии тока средней величины мышца будет сокращаться при замыкании и размыкании под соответствующим электродом. При действии сильного тока имеет значение направление тока. При нисходящем токе мышца сократится только в момент замыкания цепи, а при восходящем – в момент размыкания.

3.13. Явление парабиоза. Открыто в 1902г Н.Е.Введенским, характеризуется снижением функциональной лабильности ткани в результате удлинения периодов рефрактерности. Это пограничное состояние ткани, оно может развиться вследствие обычных физиологических процессов (под влиянием слишком частых импульсов) или под воздействием различных физических, химических и др. факторов (парабиотиков); оно обратимо, но при усилении и углублении действия вызвавшего его агента может привести к необратимым нарушениям жизнедеятельности. Парабиоз может быть следствием развития стойкой деполяризации мембраны клетки при блокаде натриевых каналов. При глубоком парабиозе нарушается основной закон реагирования – закон силовых отношений. Ткань начинает реагировать неадекватно на действие сильных и слабых раздражителей, при этом наблюдается развитие следующих фаз: 1- уравнительная – характеризуется одинаковой ответной реакцией на действие сильных и слабых раздражителей.; 2 – парадоксальная – ткань реагирует на слабые, но не реагирует (или реагирует очень слабо) на действие сильных раздражителей; 3 – тормозная – выражается в отсутствии реакции на действие любых раздражителей.




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 935; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.